Метод четырёх русских для умножения матриц — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Оценка сложности алгоритма и выбор k)
м (rollbackEdits.php mass rollback)
 
(не показано 18 промежуточных версий 5 участников)
Строка 1: Строка 1:
Дано две квадратных матрицы <tex>A_{[n \times n]}</tex> и <tex>B_{[n \times n]}</tex>,  
+
{{Задача
 +
|definition = Дано две квадратных матрицы <tex>A_{[n \times n]}</tex> и <tex>B_{[n \times n]}</tex>,  
 
состоящие из нулей и единиц. Нужно найти их произведение. При этом, все операции выполняются по модулю <tex>2</tex>.
 
состоящие из нулей и единиц. Нужно найти их произведение. При этом, все операции выполняются по модулю <tex>2</tex>.
 
+
}}
 +
</noinclude>
 +
<includeonly>{{#if: {{{neat|}}}|
 +
<div style="background-color: #fcfcfc; float:left;">
 +
<div style="background-color: #ddd;">'''Задача:'''</div>
 +
<div style="border:1px dashed #2f6fab; padding: 8px; font-style: italic;">{{{definition}}}</div>
 +
</div>|
 +
<table border="0" width="100%">
 +
<tr><td style="background-color: #ddd">'''Задача:'''</td></tr>
 +
<tr><td style="border:1px dashed #2f6fab; padding: 8px; background-color: #fcfcfc; font-style: italic;">{{{definition}}}</td></tr>
 +
</table>}}
 +
</includeonly>
 
== Простое решение ==
 
== Простое решение ==
  
Если мы будем считать произведение матриц <tex>C = A \cdot B</tex> по определению(<tex dpi=140>c_{i, j} = \sum\limits_{k = 1}^n a_{i,k}b_{k,j}</tex>), то сложность работы алгоритма составит <tex>O(n^3)</tex> {{---}} каждый из <tex>n^2</tex> элементов результирующей матрицы <tex>C</tex> вычисляется за время, пропорциональное <tex>n</tex>.
+
Если мы будем считать произведение матриц <tex>C = A \cdot B</tex> по определению <tex dpi=130>\left(c_{i, j} = \sum\limits_{k = 1}^n a_{i,k}b_{k,j}\right)</tex>, то сложность работы алгоритма составит <tex>O(n^3)</tex> {{---}} каждый из <tex>n^2</tex> элементов результирующей матрицы <tex>C</tex> вычисляется за время, пропорциональное <tex>n</tex>.
  
 
Сейчас будет показано, как немного уменьшить это время.
 
Сейчас будет показано, как немного уменьшить это время.
Строка 16: Строка 28:
 
Аналогично поступим с матрицей <tex>B</tex>, вместо строк деля столбцы. Получим матрицу <tex dpi=140>B'_{\lceil\frac nk\rceil\times n}</tex>.
 
Аналогично поступим с матрицей <tex>B</tex>, вместо строк деля столбцы. Получим матрицу <tex dpi=140>B'_{\lceil\frac nk\rceil\times n}</tex>.
  
Теперь, если вместо произведения матриц <tex>A</tex> и <tex>B</tex> считать произведение новых матриц <tex>A'</tex> и <tex>B'</tex>, воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы <tex>C</tex> будет получаться уже за время, пропорциональное <tex>\lceil \frac nk \rceil</tex> вместо <tex>n</tex>, и время произведения матриц сократится с <tex>O(n^3)</tex> до <tex dpi=140>O(n^2 \cdot\frac nk) = O(\frac{n^3}{k}) </tex>.
+
Теперь, если вместо произведения матриц <tex>A</tex> и <tex>B</tex> считать произведение новых матриц <tex>A'</tex> и <tex>B'</tex>, воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы <tex>C</tex> будет получаться уже за время, пропорциональное <tex>\lceil \dfrac{n}{k} \rceil</tex> вместо <tex>n</tex>, и время произведения матриц сократится с <tex>O(n^3)</tex> до <tex>O(n^2 \cdot\dfrac nk) = O(\dfrac{n^3}{k}) </tex>.
  
 
== Оценка сложности алгоритма и выбор k ==
 
== Оценка сложности алгоритма и выбор k ==
[[Файл:exampleFourRussiansAlgoFinal.jpg|right]]
+
[[Файл:exampleFourRussiansAlgoFinalPicture.png|500px|right]]
  
 
Оценим асимптотику данного алгоритма.
 
Оценим асимптотику данного алгоритма.
  
 
* Предподсчёт скалярных произведений работает за <tex>O(2^{2k}k)</tex>.
 
* Предподсчёт скалярных произведений работает за <tex>O(2^{2k}k)</tex>.
* Создание матриц <tex>A'</tex> и <tex>B'</tex> {{---}} <tex>O(n^2)</tex>
+
* Создание матриц <tex>A'</tex> и <tex>B'</tex> {{---}} <tex>O(n^2)</tex>.
* Перемножение полученных матриц {{---}} <tex dpi=140>O(\frac{n^3}{k})</tex>
+
* Перемножение полученных матриц {{---}} <tex>O(\dfrac{n^3}{k})</tex>.
  
Итого: <tex>O(2^{2k}k) + O(\frac{n^3}{k})</tex>.
+
Итого: <tex>O(2^{2k}k) + O(\dfrac{n^3}{k})</tex>.
Выбрав  <tex>k = \log n </tex>, получаем требуемую асимптотику <tex dpi=140>O(n^2 \log n) + O(\frac{n^3}{\log n}) = O(\frac{n^3}{\log n})</tex>
+
Выбрав  <tex>k = \log n </tex>, получаем требуемую асимптотику <tex>O(n^2 \log n) + O(\dfrac{n^3}{\log n}) = O(\dfrac{n^3}{\log n})</tex>
  
 
== Пример работы алгоритма ==
 
== Пример работы алгоритма ==
Строка 58: Строка 70:
  
 
<tex>
 
<tex>
\begin{tabular}{|c|c|c|c|c|}   
+
\begin{array}{|c|c|c|c|c|}   
 
         \hline   
 
         \hline   
 
           &  \textbf{00} & \textbf{01} & \textbf{10} & \textbf{11} \\
 
           &  \textbf{00} & \textbf{01} & \textbf{10} & \textbf{11} \\
Строка 70: Строка 82:
 
           \textbf{11} & 0 & 1 & 1 & 0\\                   
 
           \textbf{11} & 0 & 1 & 1 & 0\\                   
 
         \hline   
 
         \hline   
       \end{tabular}  
+
       \end{array}  
 
</tex>
 
</tex>
  
Строка 105: Строка 117:
 
</tex>
 
</tex>
  
Матрица <tex> C </tex> - искомая.
+
Матрица <tex> C </tex> {{---}} искомая.
  
== Литература ==
+
== Источники информации ==
 
* ''Gregory V. Bard'' — ''Accelerating Cryptanalysis with the Method of Four Russians''. July 22, 2006. Страница 5
 
* ''Gregory V. Bard'' — ''Accelerating Cryptanalysis with the Method of Four Russians''. July 22, 2006. Страница 5
  
Строка 113: Строка 125:
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Динамическое программирование]]
 
[[Категория: Динамическое программирование]]
 +
[[Категория: Способы оптимизации методов динамического программирования]]

Текущая версия на 19:14, 4 сентября 2022

Задача:
Дано две квадратных матрицы [math]A_{[n \times n]}[/math] и [math]B_{[n \times n]}[/math], состоящие из нулей и единиц. Нужно найти их произведение. При этом, все операции выполняются по модулю [math]2[/math].


Простое решение

Если мы будем считать произведение матриц [math]C = A \cdot B[/math] по определению [math]\left(c_{i, j} = \sum\limits_{k = 1}^n a_{i,k}b_{k,j}\right)[/math], то сложность работы алгоритма составит [math]O(n^3)[/math] — каждый из [math]n^2[/math] элементов результирующей матрицы [math]C[/math] вычисляется за время, пропорциональное [math]n[/math].

Сейчас будет показано, как немного уменьшить это время.

Сжатие матриц

Для выполнения сжатия матриц выполним следующий предподсчёт : для всех возможных пар двоичных векторов длины [math]k[/math] подсчитаем и запомним их скалярное произведение по модулю [math]2[/math].

Возьмём первую матрицу. разделим каждую её строку на куски размера [math]k[/math]. Для каждого куска определим номер двоичного вектора, который соответствует числам, находящимся на этом куске. Если кусок получился неравным по длине [math]k[/math](последний кусок строки), то будем считать, что в конце в нём идут не влияющие на умножение нули. Получим матрицу [math]A'_{n \times \lceil\frac{n}{k} \rceil}[/math].

Аналогично поступим с матрицей [math]B[/math], вместо строк деля столбцы. Получим матрицу [math]B'_{\lceil\frac nk\rceil\times n}[/math].

Теперь, если вместо произведения матриц [math]A[/math] и [math]B[/math] считать произведение новых матриц [math]A'[/math] и [math]B'[/math], воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы [math]C[/math] будет получаться уже за время, пропорциональное [math]\lceil \dfrac{n}{k} \rceil[/math] вместо [math]n[/math], и время произведения матриц сократится с [math]O(n^3)[/math] до [math]O(n^2 \cdot\dfrac nk) = O(\dfrac{n^3}{k}) [/math].

Оценка сложности алгоритма и выбор k

ExampleFourRussiansAlgoFinalPicture.png

Оценим асимптотику данного алгоритма.

  • Предподсчёт скалярных произведений работает за [math]O(2^{2k}k)[/math].
  • Создание матриц [math]A'[/math] и [math]B'[/math][math]O(n^2)[/math].
  • Перемножение полученных матриц — [math]O(\dfrac{n^3}{k})[/math].

Итого: [math]O(2^{2k}k) + O(\dfrac{n^3}{k})[/math]. Выбрав [math]k = \log n [/math], получаем требуемую асимптотику [math]O(n^2 \log n) + O(\dfrac{n^3}{\log n}) = O(\dfrac{n^3}{\log n})[/math]

Пример работы алгоритма

Рассмотрим работу алгоритма на примере перемножения двух матриц [math] A [/math] и [math] B [/math], где

[math] A = [/math] [math] \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{array}\right) [/math] , [math] B = [/math] [math] \left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}\right) [/math]

[math] k = \log_2 n = \log_2 4 = 2[/math], то предподсчитаем все скалярные произведения:

Для удобства каждому битовому вектору будет соответствовать двоичное число с ведущими нулями, т.е. в данном случае имеем числа [math] 00 [/math], [math] 01 [/math], [math] 10 [/math], [math] 11 [/math]. Ниже приведена таблица, в которой записаны все искомые произведения:

[math] \begin{array}{|c|c|c|c|c|} \hline & \textbf{00} & \textbf{01} & \textbf{10} & \textbf{11} \\ \hline \textbf{00} & 0 & 0 & 0 & 0 \\ \hline \textbf{01} & 0 & 1 & 0 & 1 \\ \hline \textbf{10} & 0 & 0 & 1 & 1 \\ \hline \textbf{11} & 0 & 1 & 1 & 0\\ \hline \end{array} [/math]

Согласно соглашению относительно битовых векторов и двоичных чисел получим новые матрицы [math] A' [/math] и [math] B' [/math]:

[math] A' = [/math] [math] \left(\begin{array}{cccc} 01 & 11 \\ 01 & 00 \\ 11 & 01 \\ 10 & 01 \end{array}\right) [/math] , [math] B' = [/math] [math] \left(\begin{array}{cccc} 10 & 00 & 01 & 11 \\ 10 & 01 & 10 & 01 \end{array}\right) [/math]

Перемножим эти матрицы по модулю два с использованием нашего предпосчета:

[math] C = A' \times B' = [/math] [math] \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{array}\right) [/math]

Матрица [math] C [/math] — искомая.

Источники информации

  • Gregory V. BardAccelerating Cryptanalysis with the Method of Four Russians. July 22, 2006. Страница 5