Метод четырёх русских для умножения матриц — различия между версиями
м (Дмитрий Мурзин переименовал страницу Метод четырех русских для умножения матриц в Метод четырёх русских для умножения матриц: Ёфика…) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 2 промежуточные версии 2 участников) | |||
Строка 70: | Строка 70: | ||
<tex> | <tex> | ||
− | \begin{ | + | \begin{array}{|c|c|c|c|c|} |
\hline | \hline | ||
& \textbf{00} & \textbf{01} & \textbf{10} & \textbf{11} \\ | & \textbf{00} & \textbf{01} & \textbf{10} & \textbf{11} \\ | ||
Строка 82: | Строка 82: | ||
\textbf{11} & 0 & 1 & 1 & 0\\ | \textbf{11} & 0 & 1 & 1 & 0\\ | ||
\hline | \hline | ||
− | \end{ | + | \end{array} |
</tex> | </tex> | ||
Текущая версия на 19:14, 4 сентября 2022
Задача: |
Дано две квадратных матрицы | и , состоящие из нулей и единиц. Нужно найти их произведение. При этом, все операции выполняются по модулю .
Содержание
Простое решение
Если мы будем считать произведение матриц
по определению , то сложность работы алгоритма составит — каждый из элементов результирующей матрицы вычисляется за время, пропорциональное .Сейчас будет показано, как немного уменьшить это время.
Сжатие матриц
Для выполнения сжатия матриц выполним следующий предподсчёт : для всех возможных пар двоичных векторов длины
подсчитаем и запомним их скалярное произведение по модулю .Возьмём первую матрицу. разделим каждую её строку на куски размера
. Для каждого куска определим номер двоичного вектора, который соответствует числам, находящимся на этом куске. Если кусок получился неравным по длине (последний кусок строки), то будем считать, что в конце в нём идут не влияющие на умножение нули. Получим матрицу .Аналогично поступим с матрицей
, вместо строк деля столбцы. Получим матрицу .Теперь, если вместо произведения матриц
и считать произведение новых матриц и , воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы будет получаться уже за время, пропорциональное вместо , и время произведения матриц сократится с до .Оценка сложности алгоритма и выбор k
Оценим асимптотику данного алгоритма.
- Предподсчёт скалярных произведений работает за .
- Создание матриц и — .
- Перемножение полученных матриц — .
Итого:
. Выбрав , получаем требуемую асимптотикуПример работы алгоритма
Рассмотрим работу алгоритма на примере перемножения двух матриц
и , где,
, то предподсчитаем все скалярные произведения:
Для удобства каждому битовому вектору будет соответствовать двоичное число с ведущими нулями, т.е. в данном случае имеем числа
, , , . Ниже приведена таблица, в которой записаны все искомые произведения:
Согласно соглашению относительно битовых векторов и двоичных чисел получим новые матрицы
и :,
Перемножим эти матрицы по модулю два с использованием нашего предпосчета:
Матрица
— искомая.Источники информации
- Gregory V. Bard — Accelerating Cryptanalysis with the Method of Four Russians. July 22, 2006. Страница 5