Машина Тьюринга — различия между версиями
(Отмена правки 71939, сделанной 84.47.152.2 (обсуждение)) |
м (rollbackEdits.php mass rollback) |
(не показана 1 промежуточная версия 1 участника) | |
(нет различий)
|
Текущая версия на 19:15, 4 сентября 2022
Содержание
Машина Тьюринга (англ. Turing machine) — модель абстрактного вычислителя, предложенная британским математиком Аланом Тьюрингом в 1936 году. Эта модель позволила Тьюрингу доказать два утверждения. Первое — проблема останова неразрешима, т.е. не существует такой машины Тьюринга, которая способна определить, что другая произвольная машина Тьюринга на её ленте зациклится или прекратит работу. Второе — не существует такой машины Тьюринга, которая способна определить, что другая произвольная машина Тьюринга на её ленте когда-нибудь напечатает заданный символ. В этом же году был высказан тезис Чёрча-Тьюринга, который терминах теории рекурсии формулируется как точное описание интуитивного понятия вычислимости классом общерекурсивных функций. В этой формулировке часто упоминается как просто тезис Чёрча. В терминах вычислимости по Тьюрингу тезис гласит, что для любой алгоритмически вычислимой функции существует вычисляющая её значения машина Тьюринга. В виду того, что классы частично вычислимых по Тьюрингу и частично рекурсивных функций совпадают, утверждение объединяют в единый тезис Чёрча — Тьюринга.
Неформально машина Тьюринга определяется как устройство, состоящее из двух частей:
- бесконечной одномерной ленты, разделённой на ячейки,
- головки, которая представляет собой детерминированный конечный автомат.
При запуске машины Тьюринга на ленте написано входное слово, причём на первом символе этого слова находится головка, а слева и справа от него записаны пустые символы. Каждый шаг головка может перезаписать символ под лентой и сместиться на одну ячейку, если автомат приходит в допускающее или отвергающее состояние, то работа машины Тьюринга завершается.
Определение
Определение машины
Определение: |
Формально машина Тьюринга (англ. Turing machine) определяется как кортеж из восьми элементов
| , где
Отметим, что существуют различные вариации данного выше определения (например, без отвергающего состояния или с множеством допускающих состояний), которые не влияют на вычислительные способности машины Тьюринга.
Определение процесса работы
Кроме формального определения самой машины требуется также формально описать процесс её работы. В определении для простоты будем предполагать, что головка в процессе работы не записывает на ленту символ
. Это не ограничивает вычислительной мощности машин Тьюринга, поскольку для каждой машины можно сопоставить аналогичную ей, но не пищущую на ленту.Определение: |
Назовём конфигурацией машины Тьюринга тройку
| , где
В данной записи головка находится над ячейкой, на которой написана первая буква
(или , если ).В дальнейшем используются следующие обозначения:
,Определение: |
Определим на конфигурациях отношение перехода
Особо следует рассмотреть случай переходов по пробельному символу:
| :
Очевидно, что определённое отношение является функциональным: для каждой конфигурации
существует не более одной конфигурации , для которой .Для машины Тьюринга, которая пишет символ
на ленту также можно дать аналогичное формальное определение. Оно будет отличаться тем, что символы в строчках конфигурации могут содержать пробелы, и для того, чтобы эти строчки имекли конечную длину, нужно аккуратно учесть наличие пробелов при записи правил перехода.Результат работы
Машину Тьюринга можно рассматривать как распознаватель слов формального языка. Пусть — машина Тьюринга, распознаваемый ей язык определяется как .
Также можно рассматривать машины Тьюринга как преобразователь входных данных в выходные. Машина вычислимую функцию , причём . Переход автомата в состояние можно интерпретировать как аварийное завершение программы (например, при некорретном входе).
задаётПримеры машин-распознавателей и машин-преобразователей будут даны ниже.
Примеры машин Тьюринга
Прибавление единицы
Для начала приведём пример машины-преобразователя, которая прибавляет единицу к числу, записанному на ленте в двоичной записи от младшего бита к старшему. Алгоритм следующий:
- в стартовом состоянии головка идёт вправо от младшего бита к старшему, заменяя все единицы на нули,
- встретив нуль или пробельный символ головка записывает единицу, после чего переходит в состояние ,
- в состоянии головка идёт влево от старшего бита к младшему, не изменяя символы 0 и 1 на ленте,
- встретив в состоянии пробельный символ, головка перемещается на один символ вправо и переходит в состояние , завершая работу.
Формально:
, , . Таблица функции приведена ниже:Проверка того, является ли слово палиндромом
В качестве примера машины-распознавателя приведём машину, распознающую палиндромы над алфавитом
. Алгоритм следующий:- если строка на ленте — пустая, то перейти в допускающее состояние
- надо запомнить первый символ слова в состоянии автомата,
- стереть его,
- перейти в конец ленты:
- если оставшаяся строка на ленте — пустая, то перейти в допускающее состояние
- если последний символ совпадает с запомненным, стереть его, перейти в начало ленты и повторить с первого шага
- в случае несовпадения перейти в отвергающее состояние
Формально:
, , . Таблица функции приведена ниже:Варианты машины Тьюринга
В этом разделе приведены различные варианты машин Тьюринга, которые не отличаются от обычных машин Тьюринга по вычислительной мощности.
Многодорожечная машина Тьюринга
Машиной Тьюринга с
дорожками называется вычислитель, аналогичный машине Тьюринга, лишь с тем отличием, что лента состоит из дорожек, на каждой из которых записаны символы ленточного алфавита. У многодорожечной машины одна головка, которая за один шаг переходит в одном направлении на всех дорожках одновременно. Соответственно, функция перехода имеет тип . Многодорожечная машина Тьюринга тривиально эквивалентна обычной с ленточным алфавитом .Машина Тьюринга с полубесконечной лентой
Заменив у машины Тьюринга бесконечную в обе стороны ленту на бесконечную в одну сторону, мы не теряем в вычислительной мощности. По произвольной машине Тьюринга строится двухдорожечная машина с полубесконечной лентой.
Теорема: |
Для любой машины Тьюринга существует эквивалентная машина Тьюринга, работающая на полубесконечной ленте. |
Доказательство: |
Существует алгоритм, по которому для любой машины Тьюринга может быть построена эквивалентная машина Тьюринга с объявленным свойством. Сначала занумеруем ячейки рабочей ленты машины Тьюринга с бесконечной лентой следующим образом: Затем перенумеруем ячейки, и запишем символ в начало ленты, который будет означать границу рабочей зоны:Наконец, изменим машину Тьюринга, удвоив число её состояний, и изменим сдвиг головки так, чтобы в одной группе состояний работа машины была бы эквивалентна её работе в заштрихованной зоне, а в другой группе состояний машина работала бы так, как исходная машина работает в незаштрихованной зоне. Если при работе машины Тьюринга встретится символ , значит головка достигла границы рабочей зоны: Начальное состояние новой машины Тьюринга устанавливается в одной или другой зоне в зависимости от того, в какой части исходной ленты располагалась головка считывания-записи в исходной конфигурации. |
Многоленточная машина Тьюринга
В отличие от многодорожечной машины Тьюринга, ленты не зависят друг от друга и головки во время одного шага могут перемещаться по-разному. То есть, функция перехода теперь имеет тип
.Многоленточная машина с
дорожками эмулируется многодорожечной машиной с дорожками следующим образом: каждая нечётная дорожка соответствует ленте исходной машины, а на каждой чётной дорожке отмечены специальным символом позиция головки на ленте выше (считаем, что ленты нумеруются сверху вниз).Каждый шаг исходной машины эмулируется конечной последовательностью шагов построенной машины следующим образом: исходно головка находится в позиции самой левой отметки и идёт вправо до самой правой отметки, запоминая прочитанные около символов
символы в состоянии. Пройдя до самой правой отметки, головка возвращается влево, совершая необходимые действия (переписывая символы около отметок и передвигая сами отметки). После такого прохода головка переходит в следующее состояние, завершая эмуляцию шага.Аланом Тьюрингом было сформулировано следующее утверждение:
Утверждение (Тезис Чёрча-Тьюринга): |
Класс перечислимых языков совпадает с классом языков, перечислимых с помощью машин Тьюринга |
Иными словами, тезис говорит о том, что любой алгоритм можно запрограммировать на машине Тьюринга.
Универсальная машина Тьюринга
Существует машина Тьюринга, которая принимает на вход закодированное описание произвольной машины и входную строку и эмулирует работу закодированной машины на заданном входном слове. Иными словами, универсальный язык перечислим с помощью машины Тьюринга. Ссылки на явные конструкции универсальных машин Тьюринга приведены ниже.
См. также
- Стековые машины
- Счётчиковые машины
- Клеточные автоматы
- Произвольные формальные грамматики
- Нетипизированное лямбда-исчисление
Источники информации
- Alan Turing — On computable numbers, with an application to the Entscheidungsproblem.
- F. C. Hennie, R. E. Stearn — Two-tape simulation of multitape Turing machines.
- Sanjeev Arora, Boaz Barak — Computational Complexity: A Modern Approach.
- Turlough Neary, Damien Woods — Four Small Universal Turing Machines.
- JFLAP — ПО для изучения формальных языков, включает в себя эмулятор одноленточных и многоленточных машин Тьюринга с визуальным редактором.