Виды ансамблей — различия между версиями
(→Различия между алгоритмами) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 22 промежуточные версии 4 участников) | |||
Строка 3: | Строка 3: | ||
Ансамбль алгоритмов (методов) — метод, который использует несколько обучающих алгоритмов с целью получения лучшей эффективности прогнозирования, чем можно было бы получить от каждого обучающего алгоритма по отдельности. | Ансамбль алгоритмов (методов) — метод, который использует несколько обучающих алгоритмов с целью получения лучшей эффективности прогнозирования, чем можно было бы получить от каждого обучающего алгоритма по отдельности. | ||
− | Рассмотрим задачу классификации на K классов: <tex>Y = \{1, 2, ..., K\}</tex>. <br> | + | Рассмотрим задачу классификации на <tex> K </tex> классов: <tex>Y = \{1, 2, ..., K\}</tex>. <br> |
− | Пусть имеется M | + | Пусть имеется <tex> M </tex> классификаторов ("экспертов"): <tex> f_1, f_2, ..., f_M </tex>. <br> |
− | <tex> f_m : X \ | + | <tex> f_m : X \rightarrow Y, f_m \in F, m = (1 ... M) </tex>. <br> |
Тогда давайте посмотрим новый классификатор на основе данных: | Тогда давайте посмотрим новый классификатор на основе данных: | ||
Простое голосование: <tex> f(x) = \max \limits_{k = 1 .. K} \sum \limits_{i = 1}^M I(f_i(x) = k) </tex>. <br> | Простое голосование: <tex> f(x) = \max \limits_{k = 1 .. K} \sum \limits_{i = 1}^M I(f_i(x) = k) </tex>. <br> | ||
− | Взвешенное голосование: <tex> f(x) = \max \limits_{k = 1 .. K} \sum \limits_{i = 1}^M \alpha_i I(f_i(x) = k), \sum \limits_i \alpha_i = 1, \alpha_i > 0</tex>. | + | Взвешенное голосование: <tex> f(x) = \max \limits_{k = 1 .. K} \sum \limits_{i = 1}^M \alpha_i I(f_i(x) = k), \sum \limits_i \alpha_i = 1, \alpha_i > 0</tex>. <br> |
+ | Где <tex> \begin{equation*} | ||
+ | I(x) = \begin{cases} | ||
+ | 1 &\text{x = true}\\ | ||
+ | 0 &\text{x = false} | ||
+ | \end{cases} | ||
+ | \end{equation*} | ||
+ | </tex> | ||
== Теорема Кондорсе о присяжных == | == Теорема Кондорсе о присяжных == | ||
Строка 16: | Строка 23: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Если каждый член жюри присяжных имеет независимое мнение, и если вероятность правильного решения члена жюри больше 0.5, то тогда вероятность правильного решения присяжных в целом возрастает с увеличением количества членов жюри, и | + | Если каждый член жюри присяжных имеет независимое мнение, и если вероятность правильного решения члена жюри больше 0.5, то тогда вероятность правильного решения присяжных в целом возрастает с увеличением количества членов жюри, и стремится к единице. <br> |
Если же вероятность быть правым у каждого из членов жюри меньше 0.5, то вероятность принятия правильного решения присяжными в целом монотонно уменьшается и стремится к нулю с увеличением количества присяжных. | Если же вероятность быть правым у каждого из членов жюри меньше 0.5, то вероятность принятия правильного решения присяжными в целом монотонно уменьшается и стремится к нулю с увеличением количества присяжных. | ||
}} | }} | ||
− | Пусть <tex>M</tex> — количество | + | Пусть <tex>M</tex> — количество присяжных, <tex>p</tex> — вероятность правильного решения одного эксперта, <tex>R</tex> — вероятность правильного решения всего жюри, |
<tex>m</tex> — минимальное большинство членов жюри <tex> = \lfloor \frac N 2 \rfloor + 1 </tex>. | <tex>m</tex> — минимальное большинство членов жюри <tex> = \lfloor \frac N 2 \rfloor + 1 </tex>. | ||
Строка 31: | Строка 38: | ||
Пусть имеется выборка <tex>X</tex> размера <tex>N</tex>. Количество классификаторов <tex>M</tex>. | Пусть имеется выборка <tex>X</tex> размера <tex>N</tex>. Количество классификаторов <tex>M</tex>. | ||
− | + | Алгоритм использует метод бутстрэпа (англ. ''bootstrap''): | |
− | + | Из всего множества объектов равновероятно выберем N объектов с возвращением. Это значит, что после выбора каждого из объектов мы будем возращать его в множество для выбора. Отметим, что из-за возвращения некоторые объекты могут повторяться в выбранном множестве.<br> Обозначим новую выборку через <tex>X_1</tex>. Повторяя процедуру <tex>M</tex> раз, сгенерируем <tex>M</tex> подвыборок <tex>X_1 ... X_M</tex>. Теперь мы имеем достаточно большое число выборок и можем оценивать различные статистики исходного распределения. | |
− | + | Шаги алгоритма бэггинг: | |
<ul> | <ul> | ||
<li> Генерируется с помощью бутстрэпа M выборок размера N для каждого классификатора. | <li> Генерируется с помощью бутстрэпа M выборок размера N для каждого классификатора. | ||
Строка 48: | Строка 55: | ||
<li> Консенсус: если все элементарные классификаторы присвоили объекту одну и ту же метку, то относим объект к выбранному классу. | <li> Консенсус: если все элементарные классификаторы присвоили объекту одну и ту же метку, то относим объект к выбранному классу. | ||
<li> Простое большинство: консенсус достижим очень редко, поэтому чаще всего используют метод простого большинства. Здесь объекту присваивается метка того класса, который определило для него большинство элементарных классификаторов. | <li> Простое большинство: консенсус достижим очень редко, поэтому чаще всего используют метод простого большинства. Здесь объекту присваивается метка того класса, который определило для него большинство элементарных классификаторов. | ||
− | <li> Взвешивание классификаторов: если классификаторов четное количество, то голосов может получиться поровну, еще возможно, что для | + | <li> Взвешивание классификаторов: если классификаторов четное количество, то голосов может получиться поровну, еще возможно, что для экспертов одна из групп параметров важна в большей степени, тогда прибегают к взвешиванию классификаторов. То есть при голосовании голос классификатора умножается на его вес. |
</ul> | </ul> | ||
− | [[Файл: | + | [[Файл:Виды_ансамблей_Бэггинг_рус.png|none|800px]] |
+ | |||
Рассмотрим задачу регрессии с базовыми алгоритмами <tex>b_1, b_2, ..., b_m</tex>. Предположим, что существует истинная функция ответа для всех объектов y(x), а также задано распределение p(x) на объектах. В этом случае мы можем записать ошибку каждой функции регрессии: | Рассмотрим задачу регрессии с базовыми алгоритмами <tex>b_1, b_2, ..., b_m</tex>. Предположим, что существует истинная функция ответа для всех объектов y(x), а также задано распределение p(x) на объектах. В этом случае мы можем записать ошибку каждой функции регрессии: | ||
Строка 69: | Строка 77: | ||
<tex> E_x\epsilon_i(x) = 0, E_x\epsilon_i(x)\epsilon_j(x) = 0, i ≠ j </tex> | <tex> E_x\epsilon_i(x) = 0, E_x\epsilon_i(x)\epsilon_j(x) = 0, i ≠ j </tex> | ||
− | Построим теперь новую функцию регрессии, | + | Построим теперь новую функцию регрессии, усредняющую ответы уже построенных: |
<tex> a(x) = \frac 1 n \sum \limits_{i = 1}^n b_i(x) </tex> | <tex> a(x) = \frac 1 n \sum \limits_{i = 1}^n b_i(x) </tex> | ||
Строка 84: | Строка 92: | ||
== Бустинг == | == Бустинг == | ||
− | '''Бустинг''' (англ. boosting — улучшение) — это процедура последовательного построения композиции алгоритмов машинного обучения, когда каждый следующий алгоритм стремится компенсировать недостатки композиции всех предыдущих алгоритмов. Бустинг представляет собой жадный алгоритм построения композиции алгоритмов. | + | [[Бустинг, AdaBoost|'''Бустинг''']] (англ. boosting — улучшение) — это процедура последовательного построения композиции алгоритмов машинного обучения, когда каждый следующий алгоритм стремится компенсировать недостатки композиции всех предыдущих алгоритмов. Бустинг представляет собой жадный алгоритм построения композиции алгоритмов. |
Пусть <tex>h(x, a)</tex> — базовый классификатор, где <tex>a</tex> — вектор параметров. | Пусть <tex>h(x, a)</tex> — базовый классификатор, где <tex>a</tex> — вектор параметров. | ||
Строка 94: | Строка 102: | ||
Алгоритмы бустинга: | Алгоритмы бустинга: | ||
+ | <ul> | ||
<li>[[Бустинг, AdaBoost|AdaBoost]] — адаптивный алгоритм бустинга, усиливающий классификаторы, объединяя их в «комитет». Чувствителен к шуму. | <li>[[Бустинг, AdaBoost|AdaBoost]] — адаптивный алгоритм бустинга, усиливающий классификаторы, объединяя их в «комитет». Чувствителен к шуму. | ||
<li>BrownBoost — алгоритм бустинга, эффективный на зашумленных наборах данных | <li>BrownBoost — алгоритм бустинга, эффективный на зашумленных наборах данных | ||
<li>GradientBoost — алгоритм бустинга, использующий идеи линейной регресии | <li>GradientBoost — алгоритм бустинга, использующий идеи линейной регресии | ||
<li>LogitBoost — алгоритм бустинга, использующий идеи логистической регресси | <li>LogitBoost — алгоритм бустинга, использующий идеи логистической регресси | ||
+ | </ul> | ||
== Реализации и применения бустинга == | == Реализации и применения бустинга == | ||
Строка 103: | Строка 113: | ||
Реализации бустинга: | Реализации бустинга: | ||
− | + | * [[XGBoost|XGBoost]] — одна из самых популярных и эффективных реализаций алгоритма градиентного бустинга на деревьях на 2019-й год. | |
− | + | * [[CatBoost|CatBoost]] — открытая программная библиотека, разработанная компанией Яндекс. | |
− | + | * LightGBM — библиотека для метода машинного обучения, основанная на градиентном бустинге (англ. gradient boosting). | |
− | + | ||
− | |||
− | |||
− | |||
− | |||
Применение бустинга: | Применение бустинга: | ||
− | + | * поисковые системы | |
− | + | * ранжирования ленты рекомендаций | |
− | + | * прогноз погоды | |
− | + | * оптимизации расхода сырья | |
− | + | * предсказания дефектов при производстве. | |
− | + | * исследованиях на Большом адронном коллайдере (БАК) для объединения информации с различных частей детектора LHCb в максимально точное, агрегированное знание о частице. | |
− | |||
− | |||
== Различия между алгоритмами == | == Различия между алгоритмами == | ||
Строка 126: | Строка 130: | ||
<ul> | <ul> | ||
<li> Оба алгоритма используют N базовых классификаторов | <li> Оба алгоритма используют N базовых классификаторов | ||
− | <ul> | + | <ul> |
<li> Бустинг использует последовательное обучение </li> | <li> Бустинг использует последовательное обучение </li> | ||
<li> Бэггинг использует параллельное обучение </li> | <li> Бэггинг использует параллельное обучение </li> | ||
</ul> | </ul> | ||
</li> | </li> | ||
− | <li> Оба генерируют несколько наборов | + | <li> Оба генерируют несколько наборов данных для обучения путем случайной выборки |
<ul> | <ul> | ||
<li> Бустинг определяет вес данных, чтоб утяжелить тяжелые случаи </li> | <li> Бустинг определяет вес данных, чтоб утяжелить тяжелые случаи </li> | ||
Строка 137: | Строка 141: | ||
</ul> | </ul> | ||
</li> | </li> | ||
− | <li> Оба принимают окончательное решение, усредняя N | + | <li> Оба принимают окончательное решение, усредняя N классификаторов |
<ul> | <ul> | ||
− | <li> В бустинге определяются веса | + | <li> В бустинге определяются веса для них </li> |
− | <li> В бэггинге | + | <li> В бэггинге они равнозначны </li> |
</ul> | </ul> | ||
</li> | </li> | ||
<li> Оба уменьшают дисперсию и обеспечивают более высокую стабильность | <li> Оба уменьшают дисперсию и обеспечивают более высокую стабильность | ||
<ul> | <ul> | ||
− | <li> Бэггинг может решить проблему | + | <li> Бэггинг может решить проблему переобучения </li> |
<li> Бустинг пытается уменьшить смещение, но может увеличить проблему переобучения </li> | <li> Бустинг пытается уменьшить смещение, но может увеличить проблему переобучения </li> | ||
</ul> | </ul> | ||
Строка 157: | Строка 161: | ||
from pydataset import data | from pydataset import data | ||
− | #Считаем данные The Boston Housing Dataset | + | <font color="green">#Считаем данные The Boston Housing Dataset<ref>[http://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html The Boston Housing Dataset]</ref> </font> |
df = data('Housing') | df = data('Housing') | ||
− | #Проверим данные | + | <font color="green">#Проверим данные</font> |
df.head().values | df.head().values | ||
array([[42000.0, 5850, 3, 1, 2, 'yes', 'no', 'yes', 'no', 'no', 1, 'no'], | array([[42000.0, 5850, 3, 1, 2, 'yes', 'no', 'yes', 'no', 'no', 1, 'no'], | ||
Строка 166: | Строка 170: | ||
[49500.0, 3060, 3, 1, 1, 'yes', 'no', 'no', 'no', 'no', 0, 'no'], ... | [49500.0, 3060, 3, 1, 1, 'yes', 'no', 'no', 'no', 'no', 0, 'no'], ... | ||
− | # Создадим словарь для слов 'no', 'yes' | + | <font color="green"># Создадим словарь для слов 'no', 'yes'</font> |
d = dict(zip(['no', 'yes'], range(0,2))) | d = dict(zip(['no', 'yes'], range(0,2))) | ||
for i in zip(df.dtypes.index, df.dtypes): | for i in zip(df.dtypes.index, df.dtypes): | ||
Строка 173: | Строка 177: | ||
df[‘price’] = pd.qcut(df[‘price’], 3, labels=[‘0’, ‘1’, ‘2’]).cat.codes | df[‘price’] = pd.qcut(df[‘price’], 3, labels=[‘0’, ‘1’, ‘2’]).cat.codes | ||
− | # Разделим множество на два | + | <font color="green"># Разделим множество на два</font> |
y = df['price'] | y = df['price'] | ||
X = df.drop('price', 1) | X = df.drop('price', 1) | ||
Строка 179: | Строка 183: | ||
'''Бэггинг''' | '''Бэггинг''' | ||
− | # Импорты классификаторов | + | <font color="green"># Импорты классификаторов</font> |
from sklearn.model_selection import cross_val_score | from sklearn.model_selection import cross_val_score | ||
from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier, RandomForestClassifier | from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier, RandomForestClassifier | ||
Строка 188: | Строка 192: | ||
seed = 1075 | seed = 1075 | ||
np.random.seed(seed) | np.random.seed(seed) | ||
− | # Инициализуруем классификаторы | + | <font color="green"># Инициализуруем классификаторы</font> |
rf = RandomForestClassifier() | rf = RandomForestClassifier() | ||
et = ExtraTreesClassifier() | et = ExtraTreesClassifier() | ||
Строка 207: | Строка 211: | ||
bagging_scores.mean(), bagging_scores.std()) | bagging_scores.mean(), bagging_scores.std()) | ||
− | #Результат | + | <font color="green">#Результат</font> |
Mean of: 0.632, std: (+/-) 0.081 [RandomForestClassifier] | Mean of: 0.632, std: (+/-) 0.081 [RandomForestClassifier] | ||
Mean of: 0.639, std: (+/-) 0.069 [Bagging RandomForestClassifier] | Mean of: 0.639, std: (+/-) 0.069 [Bagging RandomForestClassifier] | ||
Строка 236: | Строка 240: | ||
print("Mean: {0:.3f}, std: (+/-) {1:.3f} [{2}]".format(scores.mean(), scores.std(), label)) | print("Mean: {0:.3f}, std: (+/-) {1:.3f} [{2}]".format(scores.mean(), scores.std(), label)) | ||
− | # Результат | + | <font color="green"># Результат</font> |
Mean: 0.641, std: (+/-) 0.082 [Ada Boost] | Mean: 0.641, std: (+/-) 0.082 [Ada Boost] | ||
Mean: 0.654, std: (+/-) 0.113 [Grad Boost] | Mean: 0.654, std: (+/-) 0.113 [Grad Boost] | ||
Mean: 0.663, std: (+/-) 0.101 [XG Boost] | Mean: 0.663, std: (+/-) 0.101 [XG Boost] | ||
Mean: 0.667, std: (+/-) 0.105 [Ensemble] | Mean: 0.667, std: (+/-) 0.105 [Ensemble] | ||
+ | |||
+ | == См. также == | ||
+ | * [[:Бустинг, AdaBoost|Бустинг, AdaBoost]] | ||
+ | * [[:XGBoost|XGBoost]] | ||
+ | * [[:CatBoost|CatBoost]] | ||
+ | |||
+ | == Примечания == | ||
+ | <references/> | ||
== Источники информации == | == Источники информации == | ||
+ | * https://github.com/Microsoft/LightGBM | ||
+ | * https://github.com/dmlc/xgboost | ||
+ | * https://ru.wikipedia.org/wiki/CatBoost | ||
+ | * https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/ | ||
* https://medium.com/@rrfd/boosting-bagging-and-stacking-ensemble-methods-with-sklearn-and-mlens-a455c0c982de | * https://medium.com/@rrfd/boosting-bagging-and-stacking-ensemble-methods-with-sklearn-and-mlens-a455c0c982de | ||
− | + | ||
+ | [[Категория: Машинное обучение]] | ||
+ | [[Категория: Ансамбли]] |
Текущая версия на 19:15, 4 сентября 2022
Содержание
Ансамбль
Ансамбль алгоритмов (методов) — метод, который использует несколько обучающих алгоритмов с целью получения лучшей эффективности прогнозирования, чем можно было бы получить от каждого обучающего алгоритма по отдельности.
Рассмотрим задачу классификации на
Пусть имеется классификаторов ("экспертов"): .
.
Тогда давайте посмотрим новый классификатор на основе данных:
Простое голосование:
Взвешенное голосование: .
Где
Теорема Кондорсе о присяжных
Теорема: |
Если каждый член жюри присяжных имеет независимое мнение, и если вероятность правильного решения члена жюри больше 0.5, то тогда вероятность правильного решения присяжных в целом возрастает с увеличением количества членов жюри, и стремится к единице. Если же вероятность быть правым у каждого из членов жюри меньше 0.5, то вероятность принятия правильного решения присяжными в целом монотонно уменьшается и стремится к нулю с увеличением количества присяжных. |
Пусть
— количество присяжных, — вероятность правильного решения одного эксперта, — вероятность правильного решения всего жюри, — минимальное большинство членов жюри .Тогда
Бэггинг
Пусть имеется выборка
размера . Количество классификаторов .Алгоритм использует метод бутстрэпа (англ. bootstrap):
Из всего множества объектов равновероятно выберем N объектов с возвращением. Это значит, что после выбора каждого из объектов мы будем возращать его в множество для выбора. Отметим, что из-за возвращения некоторые объекты могут повторяться в выбранном множестве.
Обозначим новую выборку через . Повторяя процедуру раз, сгенерируем подвыборок . Теперь мы имеем достаточно большое число выборок и можем оценивать различные статистики исходного распределения.
Шаги алгоритма бэггинг:
- Генерируется с помощью бутстрэпа M выборок размера N для каждого классификатора.
- Производится независимое обучения каждого элементарного классификатора (каждого алгоритма, определенного на своем подпространстве).
- Производится классификация основной выборки на каждом из подпространств (также независимо).
- Принимается окончательное решение о принадлежности объекта одному из классов. Это можно сделать несколькими разными способами, подробнее описано ниже.
Окончательное решение о принадлежности объекта классу может приниматься, например, одним из следующих методов:
- Консенсус: если все элементарные классификаторы присвоили объекту одну и ту же метку, то относим объект к выбранному классу.
- Простое большинство: консенсус достижим очень редко, поэтому чаще всего используют метод простого большинства. Здесь объекту присваивается метка того класса, который определило для него большинство элементарных классификаторов.
- Взвешивание классификаторов: если классификаторов четное количество, то голосов может получиться поровну, еще возможно, что для экспертов одна из групп параметров важна в большей степени, тогда прибегают к взвешиванию классификаторов. То есть при голосовании голос классификатора умножается на его вес.
Рассмотрим задачу регрессии с базовыми алгоритмами . Предположим, что существует истинная функция ответа для всех объектов y(x), а также задано распределение p(x) на объектах. В этом случае мы можем записать ошибку каждой функции регрессии:
и записать матожидание среднеквадратичной ошибки:
Средняя ошибка построенных функций регрессии имеет вид:
Предположим, что ошибки несмещены и некоррелированы:
Построим теперь новую функцию регрессии, усредняющую ответы уже построенных:
Найдем ее среднеквадратичную ошибку:
Таким образом, усреднение ответов позволило уменьшить средний квадрат ошибки в
раз.Бустинг
Бустинг (англ. boosting — улучшение) — это процедура последовательного построения композиции алгоритмов машинного обучения, когда каждый следующий алгоритм стремится компенсировать недостатки композиции всех предыдущих алгоритмов. Бустинг представляет собой жадный алгоритм построения композиции алгоритмов.
Пусть
— базовый классификатор, где — вектор параметров.Задача состоит в том, чтоб найти такой алгоритм
где — коэффиценты, такие, чтобы минимизировать эмпирический риск , где — функция потерь.Очевидно, что сложно найти сразу
Основная идея в том, чтоб найти решение пошагово . Таким образом мы сможем постепенно оценивать изменение эмпирического риска .Алгоритмы бустинга:
- AdaBoost — адаптивный алгоритм бустинга, усиливающий классификаторы, объединяя их в «комитет». Чувствителен к шуму.
- BrownBoost — алгоритм бустинга, эффективный на зашумленных наборах данных
- GradientBoost — алгоритм бустинга, использующий идеи линейной регресии
- LogitBoost — алгоритм бустинга, использующий идеи логистической регресси
Реализации и применения бустинга
Реализации бустинга:
- XGBoost — одна из самых популярных и эффективных реализаций алгоритма градиентного бустинга на деревьях на 2019-й год.
- CatBoost — открытая программная библиотека, разработанная компанией Яндекс.
- LightGBM — библиотека для метода машинного обучения, основанная на градиентном бустинге (англ. gradient boosting).
Применение бустинга:
- поисковые системы
- ранжирования ленты рекомендаций
- прогноз погоды
- оптимизации расхода сырья
- предсказания дефектов при производстве.
- исследованиях на Большом адронном коллайдере (БАК) для объединения информации с различных частей детектора LHCb в максимально точное, агрегированное знание о частице.
Различия между алгоритмами
- Оба алгоритма используют N базовых классификаторов
- Бустинг использует последовательное обучение
- Бэггинг использует параллельное обучение
- Оба генерируют несколько наборов данных для обучения путем случайной выборки
- Бустинг определяет вес данных, чтоб утяжелить тяжелые случаи
- Бэггинг имеет невзвешенные данные
- Оба принимают окончательное решение, усредняя N классификаторов
- В бустинге определяются веса для них
- В бэггинге они равнозначны
- Оба уменьшают дисперсию и обеспечивают более высокую стабильность
- Бэггинг может решить проблему переобучения
- Бустинг пытается уменьшить смещение, но может увеличить проблему переобучения
Примеры кода
Инициализация
from pydataset import data #Считаем данные The Boston Housing Dataset[1] df = data('Housing')
#Проверим данные df.head().values array([[42000.0, 5850, 3, 1, 2, 'yes', 'no', 'yes', 'no', 'no', 1, 'no'], [38500.0, 4000, 2, 1, 1, 'yes', 'no', 'no', 'no', 'no', 0, 'no'], [49500.0, 3060, 3, 1, 1, 'yes', 'no', 'no', 'no', 'no', 0, 'no'], ...
# Создадим словарь для слов 'no', 'yes' d = dict(zip(['no', 'yes'], range(0,2))) for i in zip(df.dtypes.index, df.dtypes): if str(i[1]) == 'object': df[i[0]] = df[i[0]].map(d) df[‘price’] = pd.qcut(df[‘price’], 3, labels=[‘0’, ‘1’, ‘2’]).cat.codes # Разделим множество на два y = df['price'] X = df.drop('price', 1)
Бэггинг
# Импорты классификаторов from sklearn.model_selection import cross_val_score from sklearn.ensemble import BaggingClassifier, ExtraTreesClassifier, RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import RidgeClassifier from sklearn.svm import SVC seed = 1075 np.random.seed(seed) # Инициализуруем классификаторы rf = RandomForestClassifier() et = ExtraTreesClassifier() knn = KNeighborsClassifier() svc = SVC() rg = RidgeClassifier() clf_array = [rf, et, knn, svc, rg] for clf in clf_array: vanilla_scores = cross_val_score(clf, X, y, cv=10, n_jobs=-1) bagging_clf = BaggingClassifier(clf, max_samples=0.4, max_features=10, random_state=seed) bagging_scores = cross_val_score(bagging_clf, X, y, cv=10, n_jobs=-1) print "Mean of: {1:.3f}, std: (+/-) {2:.3f [{0}]" .format(clf.__class__.__name__, vanilla_scores.mean(), vanilla_scores.std()) print "Mean of: {1:.3f}, std: (+/-) {2:.3f} [Bagging {0}]\n" .format(clf.__class__.__name__, bagging_scores.mean(), bagging_scores.std())
#Результат Mean of: 0.632, std: (+/-) 0.081 [RandomForestClassifier] Mean of: 0.639, std: (+/-) 0.069 [Bagging RandomForestClassifier] Mean of: 0.636, std: (+/-) 0.080 [ExtraTreesClassifier] Mean of: 0.654, std: (+/-) 0.073 [Bagging ExtraTreesClassifier] Mean of: 0.500, std: (+/-) 0.086 [KNeighborsClassifier] Mean of: 0.535, std: (+/-) 0.111 [Bagging KNeighborsClassifier] Mean of: 0.465, std: (+/-) 0.085 [SVC] Mean of: 0.535, std: (+/-) 0.083 [Bagging SVC] Mean of: 0.639, std: (+/-) 0.050 [RidgeClassifier] Mean of: 0.597, std: (+/-) 0.045 [Bagging RidgeClassifier]
Бустинг
ada_boost = AdaBoostClassifier() grad_boost = GradientBoostingClassifier() xgb_boost = XGBClassifier() boost_array = [ada_boost, grad_boost, xgb_boost] eclf = EnsembleVoteClassifier(clfs=[ada_boost, grad_boost, xgb_boost], voting='hard') labels = ['Ada Boost', 'Grad Boost', 'XG Boost', 'Ensemble'] for clf, label in zip([ada_boost, grad_boost, xgb_boost, eclf], labels): scores = cross_val_score(clf, X, y, cv=10, scoring='accuracy') print("Mean: {0:.3f}, std: (+/-) {1:.3f} [{2}]".format(scores.mean(), scores.std(), label))
# Результат Mean: 0.641, std: (+/-) 0.082 [Ada Boost] Mean: 0.654, std: (+/-) 0.113 [Grad Boost] Mean: 0.663, std: (+/-) 0.101 [XG Boost] Mean: 0.667, std: (+/-) 0.105 [Ensemble]