Построение компонент рёберной двусвязности — различия между версиями
Novik (обсуждение | вклад) (→Однопроходный алгоритм) |
м (rollbackEdits.php mass rollback) |
||
(не показано 6 промежуточных версий 5 участников) | |||
Строка 8: | Строка 8: | ||
Воспользуемся ранее доказанной [[Использование обхода в глубину для поиска мостов#Лемма | леммой]]. Получается {{---}} перешли по мосту, следовательно началась новая компонента. | Воспользуемся ранее доказанной [[Использование обхода в глубину для поиска мостов#Лемма | леммой]]. Получается {{---}} перешли по мосту, следовательно началась новая компонента. | ||
− | '''Первый проход:''' | + | '''Первый проход:''' запустим [[Использование обхода в глубину для поиска мостов|алгоритм для поиска мостов]], чтобы посчитать две величины: <tex>tin(v)</tex> и <tex>up(v)</tex>. |
− | '''Второй проход:''' | + | '''Второй проход:''' окрашиваем вершины, т.е. если перешли по мосту, то оказались в новой компоненте реберной двусвязности. |
− | |||
=== Псевдокод второго прохода === | === Псевдокод второго прохода === | ||
+ | * В переменной <tex>\mathtt{color}</tex> хранится цвет текущей компоненты. | ||
+ | * <tex>\mathtt{maxColor}</tex> изначально равен <tex>0</tex>, что эквивалентно тому, что никакая компонента не окрашена. | ||
'''function''' paint(<tex>v</tex>, color): | '''function''' paint(<tex>v</tex>, color): | ||
Строка 43: | Строка 44: | ||
− | Однопроходный алгоритм строится на базе алгоритма поиска мостов. Во-первых, создадим глобальный [[Стек|стек]], и при спуске по дереву <tex> dfs </tex> добавляем в него вершины. Во-вторых, когда возвращаемся назад, проверяем не является ли ребро мостом (при помощи [[Использование обхода в глубину для поиска мостов#Лемма | леммы]]). Если это так, | + | Однопроходный алгоритм строится на базе алгоритма поиска мостов. Во-первых, создадим глобальный [[Стек|стек]], и при спуске по дереву <tex> dfs </tex> добавляем в него вершины. Во-вторых, когда возвращаемся назад, проверяем не является ли ребро мостом (при помощи [[Использование обхода в глубину для поиска мостов#Лемма | леммы]]). Если это так, то все вершины, находящиеся до текущего потомка в стеке, принадлежат одной компоненте.Заметим, что эта компонента будет висячей вершиной в дереве блоков и мостов, так как обходили граф поиском в глубину. Значит, ее можно выкинуть и продолжить поиск в оставшемся графе. Действуя по аналогии в получившемся графе, найдем оставшиеся компоненты реберной двусвязности. |
=== Псевдокод === | === Псевдокод === | ||
Строка 49: | Строка 50: | ||
'''function''' paint(<tex>v</tex>): | '''function''' paint(<tex>v</tex>): | ||
maxColor++ | maxColor++ | ||
− | '''while''' | + | last = -1 |
+ | '''while''' last != <tex>v</tex> '''and''' '''not''' stack.empty() | ||
colors[stack.top()] = maxColor | colors[stack.top()] = maxColor | ||
+ | last = stack.top() | ||
stack.pop() | stack.pop() | ||
Строка 66: | Строка 69: | ||
'''if''' up[<tex>u</tex>] > tin[<tex>v</tex>] | '''if''' up[<tex>u</tex>] > tin[<tex>v</tex>] | ||
paint(<tex>u</tex>) | paint(<tex>u</tex>) | ||
+ | |||
+ | Так же после вызова dfs нужно не забыть в конце вызвать ещё раз paint. | ||
Теперь две вершины имеют одинаковый цвет тогда и только тогда, когда они принадлежат одной компоненте реберной двусвязности. | Теперь две вершины имеют одинаковый цвет тогда и только тогда, когда они принадлежат одной компоненте реберной двусвязности. | ||
Строка 71: | Строка 76: | ||
Время работы dfs <tex> O(|V| + |E|)</tex>. Покраска за <tex> O(|V|) </tex>. | Время работы dfs <tex> O(|V| + |E|)</tex>. Покраска за <tex> O(|V|) </tex>. | ||
Итоговое время работы алгоритма <tex> O(|V| + |E|)</tex>. | Итоговое время работы алгоритма <tex> O(|V| + |E|)</tex>. | ||
+ | |||
+ | == См. также == | ||
+ | * [[Построение компонент вершинной двусвязности]] | ||
+ | * [[Использование обхода в глубину для поиска мостов]] | ||
== Источники информации == | == Источники информации == |
Текущая версия на 19:17, 4 сентября 2022
Построение компонент реберной двусвязности будет осуществляться с помощью обхода в глубину.
Содержание
Двупроходный алгоритм
Первый способ найти искомые компоненты — сначала определить критерий перехода в новую компоненту реберной двусвязности, а затем покрасить вершины графа в нужные цвета.
Определим критерий перехода к новой компоненте. Воспользуемся ранее доказанной леммой. Получается — перешли по мосту, следовательно началась новая компонента.
Первый проход: запустим алгоритм для поиска мостов, чтобы посчитать две величины: и .
Второй проход: окрашиваем вершины, т.е. если перешли по мосту, то оказались в новой компоненте реберной двусвязности.
Псевдокод второго прохода
- В переменной хранится цвет текущей компоненты.
- изначально равен , что эквивалентно тому, что никакая компонента не окрашена.
function paint(, color): colors[ ] = color for : if colors[ ] == 0: if up[ ] > tin[ ]: maxColor++ paint( , maxColor) else: paint( , color)
function solve(): for: colors[ ] = 0 if not visited[ ] dfs( ) maxColor = 0 for : if colors[ ] == 0: maxColor++ paint( , maxColor)
Вершины каждой из компонент реберной двусвязности окажутся окрашенными в свой цвет.
Время работы алгоритма будет время работы двух запусков dfs, то есть
, что есть .Однопроходный алгоритм
Однопроходный алгоритм строится на базе алгоритма поиска мостов. Во-первых, создадим глобальный стек, и при спуске по дереву добавляем в него вершины. Во-вторых, когда возвращаемся назад, проверяем не является ли ребро мостом (при помощи леммы). Если это так, то все вершины, находящиеся до текущего потомка в стеке, принадлежат одной компоненте.Заметим, что эта компонента будет висячей вершиной в дереве блоков и мостов, так как обходили граф поиском в глубину. Значит, ее можно выкинуть и продолжить поиск в оставшемся графе. Действуя по аналогии в получившемся графе, найдем оставшиеся компоненты реберной двусвязности.
Псевдокод
function paint(): maxColor++ last = -1 while last != and not stack.empty() colors[stack.top()] = maxColor last = stack.top() stack.pop()
function dfs() time = time + 1 stack.push( ) tin[ ] = time up[ ] = time for : if — обратное ребро up[ ] = min(up[ ], tin[ ]) if not visited[ ] dfs( ) up[ ] = min(up[ ], up[ ]) if up[ ] > tin[ ] paint( )
Так же после вызова dfs нужно не забыть в конце вызвать ещё раз paint.
Теперь две вершины имеют одинаковый цвет тогда и только тогда, когда они принадлежат одной компоненте реберной двусвязности.
Время работы dfs
. Покраска за . Итоговое время работы алгоритма .См. также
Источники информации
- Седжвик Р. Фундаментальные алгоритмы на C++. Часть 5: Алгоритмы на графах. Пер. с англ. — СПб.: ООО «ДиаСофтЮП», 2002. — С. 123-128
- Кузнецов В.А., Караваев. А.М. "Оптимизация на графах" - Петрозаводск, Издательство ПетрГУ 2007
- Визуализация — Построение компонент реберной двусзяности