Изменения

Перейти к: навигация, поиск

Алгоритм Витерби

345 байт добавлено, 19:17, 4 сентября 2022
м
rollbackEdits.php mass rollback
== История ==
'''Алгоритм Витерби''' (англ. ''Viterbi algorithm'') был представлен в 1967 году для декодирования сверточных кодов, поступающих через зашумленный канал связи. В 1969 году Омура (Omura) показал, что основу алгоритма Витерби составляет оценка максимума правдоподобия, которая является популярным статистическим методом для создания статистической модели на основе данных и обеспечения оценки параметров модели(т.е. оценка неизвестного параметра максимизацией функции правдоподобия).
{{Определение
|id=def1.
|definition='''Сверточный код''' (англ. ''Convolutional code '') {{---}} это корректирующий ошибки код, в котором
#На каждом такте работы кодера <tex>\mathtt{k}</tex> символов входной полубесконечной последовательности преобразуются в <tex>\mathtt{n } > \mathtt{k}</tex> символов выходной
#Также в преобразовании участвуют <tex>\mathtt{m}</tex> предыдущих символов
#Выполняется свойство линейности (если <tex>\mathtt{x}</tex> соответствует <tex>\mathtt{X}</tex>, а <tex>\mathtt{y}</tex> соответствует <tex>\mathtt{Y}</tex>, то <tex>\mathtt{ax } + \mathtt{by}</tex> соответствует <tex>\mathtt{aX } + \mathtt{bY}</tex>).
}}
#Скрытые и наблюдаемые события должны быть последовательностью, которая упорядочена по времени.
#Каждое скрытое событие должно соответствовать только одному наблюдаемому.
#Вычисление наиболее вероятной скрытой последовательности до момента <tex>\mathtt{t}</tex> зависит только от наблюдаемого события в этот момент времени и наиболее вероятной последовательности до момента <tex>\mathtt{t } - 1}</tex> (динамическое программирование).
== Алгоритм ==
'''Входные данные:'''
#Пространство наблюдений <tex>\mathtt{O } =\{\mathtt{o_1},\mathtt{o_2 } \ldots \mathtt{o_N}\}}</tex>#Пространство состояний <tex>\mathtt{S } =\{\mathtt{s_1},\mathtt{s_2 } \ldots \mathtt{s_K}\}}</tex>#Последовательность наблюдений <tex>\mathtt{Y } =\{\mathtt{y_1},\mathtt{y_2 } \ldots \mathtt{y_T}\}}</tex>#Матрица <tex>\mathtt{A}</tex> переходов из <tex>\mathtt{i}</tex>-того состояния в <tex>\mathtt{j}</tex>-ое, размером <tex>\mathtt{K } \times \mathtt{K}</tex> #Матрица эмиссии <tex>\mathtt{B}</tex> размера <tex>\mathtt{K } \times \mathtt{N}</tex>, которая определяет вероятность наблюдения <tex>\mathtt{o_j}</tex> из состояния <tex>\mathtt{s_i}</tex>
#Массив начальных вероятностей <tex>\mathtt{\pi}</tex> размером <tex>\mathtt{K}</tex>, показывающий вероятность того, что начальное состояние <tex>\mathtt{s_i}</tex>
'''Выходные данные''':
<tex>\mathtt{X } =\{\mathtt{x_1},\mathtt{x_2 } \ldots \mathtt{x_T}\}}</tex> {{---}} последовательность состояний, которые привели к последовательности наблюдений <tex>\mathtt{Y}</tex>.
'''Алгоритм:'''
Создадим две матрицы <tex>\mathtt{TState}</tex> и <tex>\mathtt{TIndex}</tex> размером <tex>\mathtt{K } \times \mathtt{T}</tex>. Каждый элемент <tex>\mathtt{TState}[\mathtt{i},\mathtt{j}]</tex> содержит вероятность того, что на <tex>\mathtt{j}</tex>-ом шаге мы находимся в состоянии <tex>\mathtt{s_i}</tex>. Каждый элемент <tex>\mathtt{TIndex}[\mathtt{i},\mathtt{j}]</tex> содержит индекс наиболее вероятного состояния на <tex>{\mathtt{j} -1}}</tex>-ом шаге.
'''Шаг 1.''' Заполним первый столбец матриц <tex>\mathtt{TState}</tex> на основании начального распределения, и <tex>\mathtt{TIndex}</tex> нулями.
Наиболее вероятная последовательность скрытых состояний получается следующими реккурентными соотношениями:
*<tex>\mathtt{V_{1,k}} = \mathrm{P}(\mathtt{y_1 } \mid \mathtt{k}) \cdot \pi_k}</tex>*<tex>\mathtt{V_{t,k}} = \max\limits_{\mathtt{x} \in \mathtt{S}}\left(\mathrm{P}(\mathtt{y_t } \mid \mathtt{k}) \cdot \mathtt{A_{x,k}} \cdot \mathtt{V_{t-1,x}}\right), {x \in S} }</tex>Где <tex>\mathtt{V_{t,k}}</tex> это вероятность наиболее вероятной последовательности, которая ответственна за первые <tex>\mathtt{t}</tex> наблюдений, у которых <tex>\mathtt{k}</tex> является завершающим состоянием. Путь Витерби может быть получен сохранением обратных указателей, которые помнят какое состояние было использовано во втором равенстве. Пусть <tex>\mathrm{Ptr}(\mathtt{k},\mathtt{t})</tex> {{---}} функция, которая возвращает значение <tex>\mathtt{x}</tex>, использованное для подсчета <tex>\mathtt{V_{t,k}}</tex> если <tex>\mathtt{t } > 1}</tex>, или <tex>\mathtt{k}</tex> если <tex>\mathtt{t}=1}</tex>. Тогда:*<tex>\mathtt{x_T } = \argmathtt{x} \in \max (mathtt{S} : \mathtt{V_{T,x}), {x } \leadsto \in S}}max</tex>*<tex>\mathtt{x_{t-1}} = \mathrm{Ptr}(\mathtt{x_t},\mathtt{t})}</tex>
== Псевдокод ==
Функция возвращает вектор <tex>\mathtt{X}</tex> : последовательность номеров наиболее вероятных состояний, которые привели к данным наблюдениям.
'''Viterbi'''(<tex>\mathrm{Viterbi}(\mathtt {O}, \mathtt {S}, \mathtt {P} , \mathtt {Y}, \mathtt {A}, \mathtt {B})</tex>) '''for''' <tex>\mathtt{j} = 1</tex> '''to''' <tex>\mathtt {K}</tex> <tex>\mathtt{TState}[\mathtt{ij}, 1}] = \mathtt{P}[\mathtt{ij}] * \mathtt{B}[\mathtt{ij},} \mathtt{Y}[\mathtt{1}]]</tex> <tex>\mathtt{TIndex}[\mathtt{ij}, 1}] = 0</tex> '''for''' <tex>\mathtt{i} = 2</tex> '''to''' <tex>\mathtt {T}</tex> '''for''' <tex>\mathtt{j} = 1</tex> '''to''' <tex>\mathtt {K}</tex> <tex>\mathtt{TStateTIndex}[\mathtt{j}, \mathtt{i}]} = \max_{1 \leqslant \mathtt{k}\leqslant in \mathtt{K}} \limits : (\mathtt{TState}[\mathtt{k}, \mathtt{i } - 1] * \mathtt{A}[\mathtt{k}, \mathtt{j}] * \mathtt{B}[\mathtt{j}, \mathtt{Y}[\mathtt{i}]]})\leadsto \max</tex> <tex>\mathtt{TIndexTState}[\mathtt{j}, \mathtt{i}]} = \argmathtt{TState}[\max_mathtt{1 \leqslant TIndex}[\mathtt{kj}\leqslant , \mathtt{K}i} \limits (], \mathtt{TState[k, i } - 1] * \mathtt{A}[\mathtt{k}, \mathtt{j}] * \mathtt{B}[\mathtt{j}, \mathtt{Y}[i]]})</tex> ''<font color=green>// функция arg max() ищет максимум выражения в скобках и возвращает аргумент(в нашем случае <tex>\mathtt{ki}]]</tex>), при котором достигается этот максимум</font>'' <tex>\mathtt{X}[\mathtt{T}] = \arg\max_{1 \leqslant \mathtt{k}\leqslant \mathtt{K}} \limits (\mathtt{TState}[\mathtt{k}, \mathtt{T}])</tex>
'''for''' <tex>\mathtt{i} = \mathtt{T}</tex> '''downto''' <tex>2</tex>
<tex>\mathtt{X}[\mathtt{i } - 1}] = \mathtt{TIndex}[\mathtt{X}[\mathtt{i}], \mathtt{, i}]</tex>
'''return''' <tex>\mathtt{X}</tex>
Таким образом, алгоритму требуется <tex>\mathrm{O}(\mathtt{T}\times\left|{\mathtt{K}}\right|^2})</tex> времени.
== Применение ==
Алгоритм используется в <tex>\mathrm{CDMA }</tex> и <tex>\mathrm{GSM }</tex> цифровой связи, в модемах и космических коммуникациях. Он нашел применение в распознавании речи и письма, компьютерной лингвистике и биоинформатике, а также в алгоритме свёрточного декодирования Витерби.
== См. также ==
1632
правки

Навигация