Асимптотика гипергеометрических последовательностей — различия между версиями
Iksiygrik (обсуждение | вклад) м |
м (rollbackEdits.php mass rollback) |
||
(не показаны 4 промежуточные версии 2 участников) | |||
Строка 2: | Строка 2: | ||
|id=def1. | |id=def1. | ||
|definition= | |definition= | ||
− | Последовательность, в которой отношение двух соседних членов <tex> | + | Последовательность, в которой отношение двух соседних членов равно отношению многочленов <tex>A(n)</tex> степени <tex>k</tex>, где <tex>k > 0</tex> и <tex>n</tex> - порядковый номер члена последовательности, называется '''гипергеометрической''' (англ. ''hypergeometric sequence''). |
}} | }} | ||
Строка 38: | Строка 38: | ||
Поэтому для некоторой постоянной <tex>C</tex> при достаточно маленьком <tex>x</tex> имеем <tex>|\ln f(x) - (\alpha_1 - \beta_1) \cdot x|<C \cdot x^2</tex>. В частности, если <tex>N</tex> достаточно велико, то <tex>∀ n>N</tex> получаем систему <tex>(*)</tex> | Поэтому для некоторой постоянной <tex>C</tex> при достаточно маленьком <tex>x</tex> имеем <tex>|\ln f(x) - (\alpha_1 - \beta_1) \cdot x|<C \cdot x^2</tex>. В частности, если <tex>N</tex> достаточно велико, то <tex>∀ n>N</tex> получаем систему <tex>(*)</tex> | ||
− | <tex>\left| \ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \cdot \cfrac{1}{n} \right| < C \cdot \cfrac{1}{n^2} | + | <tex> |
+ | \begin{equation*} | ||
+ | \begin{cases} | ||
+ | \left| \ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \cdot \cfrac{1}{n} \right| < C \cdot \cfrac{1}{n^2}, \\ | ||
− | + | \left| \ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \cdot \cfrac{1}{n+1} \right| < C \cdot \cfrac{1}{(n+1)^2}, \\ | |
− | + | \ldots \\ | |
− | + | \left| \ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \cdot \cfrac{1}{n+m} \right| < C \cdot \cfrac{1}{(n+m)^2}. \\ | |
+ | \end{cases} | ||
+ | \end{equation*} | ||
+ | </tex> | ||
Теперь интересующее нас выражение в левой части неравенства <tex>|\ln a_{n+m} - \ln a_n - m \cdot \ln A - (\alpha_1 - \beta_1) \cdot \ln {(n + m)} + (\alpha_1 - \beta_1) \cdot \ln n| < ε </tex> можно оценить с помощью системы <tex>(*)</tex> и неравенства треугольника<ref>[https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0 Неравенство треугольника]</ref>: | Теперь интересующее нас выражение в левой части неравенства <tex>|\ln a_{n+m} - \ln a_n - m \cdot \ln A - (\alpha_1 - \beta_1) \cdot \ln {(n + m)} + (\alpha_1 - \beta_1) \cdot \ln n| < ε </tex> можно оценить с помощью системы <tex>(*)</tex> и неравенства треугольника<ref>[https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0 Неравенство треугольника]</ref>: | ||
Строка 67: | Строка 73: | ||
− | (Здесь через <tex>[x]</tex> обозначена целая часть числа <tex>x</tex>, наибольшее целое число, не превосходящее <tex>x</tex>.) Эта площадь больше, чем площадь под графиком функции <tex>y = \cfrac{1}{x}</tex>, но меньше, чем площадь под графиком функции <tex>y = \cfrac{1}{x-1}</tex> на этом же отрезке. Площадь под графиком функции <tex>\cfrac {1}{x}</tex> равна <tex>\ln {(n + m)} - \ln {n}</tex>, площадь под графиком функции <tex>y = \cfrac{1}{x-1}</tex> равна <tex>\ln {(n+m-1)} - \ln {(n-1)}</tex>. Таким образом, интересующая нас разность не превосходит <tex>\left| (\ln {(n+m-1)} - \ln {(n-1)}) - ( | + | (Здесь через <tex>[x]</tex> обозначена целая часть числа <tex>x</tex>, наибольшее целое число, не превосходящее <tex>x</tex>.) Эта площадь больше, чем площадь под графиком функции <tex>y = \cfrac{1}{x}</tex>, но меньше, чем площадь под графиком функции <tex>y = \cfrac{1}{x-1}</tex> на этом же отрезке. Площадь под графиком функции <tex>\cfrac {1}{x}</tex> равна <tex>\ln {(n + m)} - \ln {n}</tex>, площадь под графиком функции <tex>y = \cfrac{1}{x-1}</tex> равна <tex>\ln {(n+m-1)} - \ln {(n-1)}</tex>. Таким образом, интересующая нас разность не превосходит <tex>\left| (\ln {(n+m-1)} - \ln {(n-1)}) - \left( \ln {(n+m)} - \ln n \right) \right| =</tex> |
+ | |||
+ | <tex>= \left| \ln {\cfrac {n+m-1}{n+m} - \ln {\cfrac {n-1}{n}}} \right| = </tex> | ||
<tex>= \left| \ln {\left(1 - \cfrac{1}{n+m}\right)} - \ln {\left(1 - \cfrac{1}{n}\right)} \right| <</tex> | <tex>= \left| \ln {\left(1 - \cfrac{1}{n+m}\right)} - \ln {\left(1 - \cfrac{1}{n}\right)} \right| <</tex> | ||
+ | |||
<tex>< \left| \ln {\left(1 - \cfrac{1}{n}\right)} \right| < C \cdot \cfrac{1}{n}</tex>. | <tex>< \left| \ln {\left(1 - \cfrac{1}{n}\right)} \right| < C \cdot \cfrac{1}{n}</tex>. | ||
}} | }} | ||
Строка 90: | Строка 99: | ||
<tex>A(s) = \cfrac {1 - \sqrt {1 - 4 \cdot s}}{2 \cdot s}</tex> | <tex>A(s) = \cfrac {1 - \sqrt {1 - 4 \cdot s}}{2 \cdot s}</tex> | ||
− | Второй корень уравнения отбрасывается, так как <tex>\cfrac {1 + \sqrt {1 - 4 \cdot s}}{2 \cdot s} = \cfrac {1}{s} + \ldots</tex> содержит отрицательные степени s</tex> | + | Второй корень уравнения отбрасывается, так как <tex>\cfrac {1 + \sqrt {1 - 4 \cdot s}}{2 \cdot s} = \cfrac {1}{s} + \ldots</tex> содержит отрицательные степени <tex>s</tex> |
Найденная производящая функция позволяет найти явную форму для [[Числа Каталана|чисел Каталана]]. Согласно биному Ньютона <ref>[https://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%BD%D0%BE%D0%BC_%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD%D0%B0 Бином Ньютона]</ref> | Найденная производящая функция позволяет найти явную форму для [[Числа Каталана|чисел Каталана]]. Согласно биному Ньютона <ref>[https://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%BD%D0%BE%D0%BC_%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD%D0%B0 Бином Ньютона]</ref> |
Текущая версия на 19:17, 4 сентября 2022
Определение: |
Последовательность, в которой отношение двух соседних членов равно отношению многочленов | степени , где и - порядковый номер члена последовательности, называется гипергеометрической (англ. hypergeometric sequence).
Вычисление асимптотики
Лемма: |
Пусть последовательность положительных чисел такова, что для всех достаточно больших , причем . Тогда растет как для некоторой постоянной .
|
Доказательство: |
Рассмотрим предел [1] на бесконечности следует, что он равен некоторому , то есть . Из чего можно сделать вывод, что утверждение леммы эквивалентно тому, что существует предел . Для доказательства существования предела применим критерий Коши[2], т. е. будем доказывать, что рассматриваемая последовательность фундаментальна[3]. Перепишем отношение в виде, где
Прологарифмировав отношение , получаем. Посмотрим на функцию . Выпишем начальные члены разложения функции в ряд в точке :для некоторой константы . Это разложение - самый существенный элемент доказательства. Именно коэффициент (отличный от нуля по предположению леммы) при линейном члене указывает на присутствие сомножителя в асимптотике. Для логарифма функции имеем
Поэтому для некоторой постоянной при достаточно маленьком имеем . В частности, если достаточно велико, то получаем систему
Теперь интересующее нас выражение в левой части неравенства [4]: можно оценить с помощью системы и неравенства треугольника
. Поскольку ряд сходится, первое слагаемое в правой части последнего неравенства при больших можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции на отрезке ,
. |
Примеры
Пример. Рассмотрим производящую функцию для чисел Каталана
Возведя ее в квадрат и умножив результат на s, получим
,
что дает нам квадратное уравнение на производящую функцию
откуда
Второй корень уравнения отбрасывается, так как
содержит отрицательные степениНайденная производящая функция позволяет найти явную форму для чисел Каталана. Согласно биному Ньютона [5]
откуда, умножая на числитель и знаменатель на
и сокращая на , получаем
Последняя формула дает и более простое рекурсивное соотношение для чисел Каталана:
Поэтому
для некоторой постоянной .Пример. Найдем асимптотику коэффициентов для функции
, где вещественно. В ряде случаев эта асимптотика нам уже известна, например, при . Согласно определению функции имеем
Если
— целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае, начиная с некоторого номера, все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться леммой при
Поэтому чисел Каталана.
. Например, коэффициенты функции ведут себя как , и мы получаем повторный вывод ассимптотики для