Дерево Фенвика — различия между версиями
(русский) |
м (rollbackEdits.php mass rollback) |
||
(не показано 7 промежуточных версий 7 участников) | |||
Строка 23: | Строка 23: | ||
{{Лемма | {{Лемма | ||
|statement= Все такие <tex> i </tex>, для которых меняется <tex>T_i</tex> при изменении <tex>a_k</tex>, можно найти по формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>, где <tex> \mid </tex> — это операция побитового логического <tex> OR </tex>. | |statement= Все такие <tex> i </tex>, для которых меняется <tex>T_i</tex> при изменении <tex>a_k</tex>, можно найти по формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>, где <tex> \mid </tex> — это операция побитового логического <tex> OR </tex>. | ||
− | |proof=Из доказанной выше леммы следует, что первый элемент последовательности само <tex> k </tex>. Для него выполняется равенство, так как <tex> F(i) \leqslant i </tex>. По формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как <tex>F(i)</tex> осталось прежним или уменьшилось, а <tex> i </tex> увеличилось. <tex> F(i) </tex> не может увеличиться, так как функция <tex> F </tex> заменяет последние подряд идущие единицы числа <tex> i </tex> на нули, а по формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> у нового значения <tex> i </tex> увеличивается количество единиц в конце, что не может привести к увеличению <tex> F(i) </tex>. Докажем от противного, что нельзя рассматривать значения <tex> i </tex>, отличные от тех, которые мы получили по формуле. Рассмотрим две различные последовательности индексов. Первая последовательность получена по формуле, вторая — некоторая последовательность чисел | + | |proof=Из доказанной выше леммы следует, что первый элемент последовательности само <tex> k </tex>. Для него выполняется равенство, так как <tex> F(i) \leqslant i </tex>. По формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как <tex>F(i)</tex> осталось прежним или уменьшилось, а <tex> i </tex> увеличилось. <tex> F(i) </tex> не может увеличиться, так как функция <tex> F </tex> заменяет последние подряд идущие единицы числа <tex> i </tex> на нули, а по формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> у нового значения <tex> i </tex> увеличивается количество единиц в конце, что не может привести к увеличению <tex> F(i) </tex>. Докажем от противного, что нельзя рассматривать значения <tex> i </tex>, отличные от тех, которые мы получили по формуле. Рассмотрим две различные последовательности индексов. Первая последовательность получена по формуле, вторая — некоторая последовательность чисел превосходящих <tex>k</tex>. Возьмём число <tex> j </tex> из второй последовательности, которого нет в первой последовательности. Пусть <tex>F(j) \leqslant k </tex>. Уберём у <tex>j</tex> все подряд идущие единицы в конце двоичной записи, столько же цифр уберём в конце числа <tex>k</tex>. Обозначим их как <tex>j_{0}</tex> и <tex>k_{0}</tex>. Чтобы выполнялось условие <tex>F(j) \leqslant k </tex>, должно выполняться неравенство <tex>j_{0} \leqslant k_{0}</tex>. Но если <tex>j_{0} < k_{0}</tex>, то и <tex>j \leqslant k</tex>, что противоречит условию <tex>j > k</tex>. Значит, <tex>j_{0} = k_{0}</tex>. Но тогда <tex>j</tex> возможно получить по формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>, следовательно, <tex>F(j) > k </tex>. Получили противоречие: <tex>j</tex> можно вычислить по формуле, а это значит, что оно содержится в первой последовательности. Таким образом, нужные элементы можно искать по формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>. |
}} | }} | ||
Строка 86: | Строка 86: | ||
{| style="background-color:#CCC;margin:0.5px" | {| style="background-color:#CCC;margin:0.5px" | ||
− | |style="background-color:#EEE;padding:2px 30px"| <tex> | + | |style="background-color:#EEE;padding:2px 30px"| <tex>i_{prev}</tex> |
|style="background-color:#FFF;padding:2px 30px"| <tex>\ldots 011 \ldots 1</tex> | |style="background-color:#FFF;padding:2px 30px"| <tex>\ldots 011 \ldots 1</tex> | ||
|- | |- | ||
Строка 109: | Строка 109: | ||
'''function''' set(i, x): | '''function''' set(i, x): | ||
d = x - a[i] | d = x - a[i] | ||
+ | a[i] = x | ||
modify(i, d) | modify(i, d) | ||
Строка 124: | Строка 125: | ||
Обозначим <tex> G_i = \mathrm {sum(i)} = \sum\limits_{k = 0}^{i} a_k </tex>. Тогда <tex> \mathrm {sum(i, j)} = \sum\limits_{k = i}^{j} a_k = G_j - G_{i - 1} </tex>. | Обозначим <tex> G_i = \mathrm {sum(i)} = \sum\limits_{k = 0}^{i} a_k </tex>. Тогда <tex> \mathrm {sum(i, j)} = \sum\limits_{k = i}^{j} a_k = G_j - G_{i - 1} </tex>. | ||
− | Для нахождения <tex>\mathrm {sum(i)}</tex> будем действовать следующим образом. Берём <tex>T_i</tex>, которое является суммой элементов с индексами от <tex>F(i)</tex> до <tex>i</tex>. Теперь к этому значению нужно прибавить <tex>\mathrm {sum(F(i) - 1)}</tex>. Аналогично продолжаем складывать, пока не <tex>F( | + | Для нахождения <tex>\mathrm {sum(i)}</tex> будем действовать следующим образом. Берём <tex>T_i</tex>, которое является суммой элементов с индексами от <tex>F(i)</tex> до <tex>i</tex>. Теперь к этому значению нужно прибавить <tex>\mathrm {sum(F(i) - 1)}</tex>. Аналогично продолжаем складывать, пока не <tex>F(i)</tex> не станет равным <tex>0</tex>. |
Покажем, что запрос суммы работает за <tex>O(\log{n})</tex>. Рассмотрим двоичную запись числа <tex>i</tex>. Функция <tex>F(i)</tex> заменила его последние единицы на нули (заметим, что количество нулей в конце станет больше, чем количество единиц в конце до этого). Теперь вычтем единицу из <tex>F(i)</tex> (переход к следующему столбику). Количество единиц в конце увеличилось, по сравнению с <tex>i</tex>, так как мы заменили все нули в конце на единицы. Проводя эти действия дальше, мы придём к тому, что получили <tex>0</tex>. В худшем случае мы должны были повторять эти операции <tex>l</tex> раз, где <tex>l</tex> — количество цифр в двоичной записи числа <tex>i</tex>, что не превосходит <tex>\log_{2}{i} + 1</tex>. Значит, запрос суммы выполняется за <tex>O(\log{n})</tex>. | Покажем, что запрос суммы работает за <tex>O(\log{n})</tex>. Рассмотрим двоичную запись числа <tex>i</tex>. Функция <tex>F(i)</tex> заменила его последние единицы на нули (заметим, что количество нулей в конце станет больше, чем количество единиц в конце до этого). Теперь вычтем единицу из <tex>F(i)</tex> (переход к следующему столбику). Количество единиц в конце увеличилось, по сравнению с <tex>i</tex>, так как мы заменили все нули в конце на единицы. Проводя эти действия дальше, мы придём к тому, что получили <tex>0</tex>. В худшем случае мы должны были повторять эти операции <tex>l</tex> раз, где <tex>l</tex> — количество цифр в двоичной записи числа <tex>i</tex>, что не превосходит <tex>\log_{2}{i} + 1</tex>. Значит, запрос суммы выполняется за <tex>O(\log{n})</tex>. | ||
Строка 132: | Строка 133: | ||
'''int''' sum(i): | '''int''' sum(i): | ||
result = 0 | result = 0 | ||
− | '''while''' | + | '''while''' i >= 0 |
result += t[i] | result += t[i] | ||
i = f(i) - 1 | i = f(i) - 1 | ||
+ | return result | ||
==Сравнение дерева Фенвика и дерева отрезков== | ==Сравнение дерева Фенвика и дерева отрезков== |
Текущая версия на 19:18, 4 сентября 2022
Содержание
Описание структуры
Дерево Фе́нвика (англ. Binary indexed tree) — структура данных, требующая
памяти и позволяющая эффективно (за ) выполнять следующие операции:- изменять значение любого элемента в массиве,
- выполнять некоторую ассоциативную, коммутативную, обратимую операцию на отрезке .
Впервые описано Питером Фенвиком в 1994 году.
Пусть дан массив
. Деревом Фенвика будем называть массив из элементов: , где и — некоторая функция, от выбора которой зависит время работы операций над деревом. Рассмотрим функцию, позволяющую делать операции вставки и изменения элемента за время . Она задается простой формулой: , где — это операция побитового логического . При числа и его значения, увеличенного на единицу, мы получаем это число без последних подряд идущих единиц.Эту функцию можно вычислять по другой формуле:
где — количество подряд идущих единиц в конце бинарной записи числа . Оба варианта равносильны, так как функция, заданная какой-либо из этих формул, заменяет все подряд идущие единицы в конце числа на нули.Запрос изменения элемента
Нам надо научиться быстро изменять частичные суммы в зависимости от того, как изменяются элементы. Рассмотрим как изменяется массив
при изменении элемента .Лемма: |
Для пересчёта дерева Фенвика при изменении величины необходимо изменить элементы дерева , для индексов которых верно неравенство . |
Доказательство: |
необходимо менять те , для которых попадает в необходимые удовлетворяют условию . |
Лемма: |
Все такие , для которых меняется при изменении , можно найти по формуле , где — это операция побитового логического . |
Доказательство: |
Из доказанной выше леммы следует, что первый элемент последовательности само | . Для него выполняется равенство, так как . По формуле мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как осталось прежним или уменьшилось, а увеличилось. не может увеличиться, так как функция заменяет последние подряд идущие единицы числа на нули, а по формуле у нового значения увеличивается количество единиц в конце, что не может привести к увеличению . Докажем от противного, что нельзя рассматривать значения , отличные от тех, которые мы получили по формуле. Рассмотрим две различные последовательности индексов. Первая последовательность получена по формуле, вторая — некоторая последовательность чисел превосходящих . Возьмём число из второй последовательности, которого нет в первой последовательности. Пусть . Уберём у все подряд идущие единицы в конце двоичной записи, столько же цифр уберём в конце числа . Обозначим их как и . Чтобы выполнялось условие , должно выполняться неравенство . Но если , то и , что противоречит условию . Значит, . Но тогда возможно получить по формуле , следовательно, . Получили противоречие: можно вычислить по формуле, а это значит, что оно содержится в первой последовательности. Таким образом, нужные элементы можно искать по формуле .
Заметим, что
возрастает немонотонно. Поэтому нельзя просто перебирать значения от , пока не нарушается условие. Например, пусть . При данной стратегии на следующем шаге ( ) нарушится условие и мы прекратим пересчитывать . Но тогда мы упускаем остальные значения , например ., десятичная запись | |||||||||||
, двоичная запись | |||||||||||
, двоичная запись | |||||||||||
, десятичная запись |
Все мы можем получить следующим образом: . Следующим элементом в последовательности будет элемент, у которого первый с конца ноль превратится в единицу. Можно заметить, что если к исходному элементу прибавить единицу, то необходимый ноль обратится в единицу, но при этом все следующие единицы обнулятся. Чтобы обратно их превратить в единицы, применим операцию . Таким образом все нули в конце превратятся в единицы и мы получим нужный элемент. Для того, чтобы понять, что эта последовательность верна, достаточно посмотреть на таблицу.
Несложно заметить, что данная последовательность строго возрастает и в худшем случае будет применена логарифм раз, так как добавляет каждый раз по одной единице в двоичном разложении числа
.Напишем функцию, которая будет прибавлять к элементу
число , и при этом меняет соответствующие частичные суммы. Так как наш массив содержит элементов, то мы будем искать до тех пор, пока оно не превышает значение .function modify(i, d): while i < N t[i] += d i = i | (i + 1)
Часто можно встретить задачу, где требуется заменить значение элемента
на . Заметим, что если вычислить разность и , то можно свести эту задачу к операции прибавления к .function set(i, x): d = x - a[i] a[i] = x modify(i, d)
Построение дерева можно осуществить, исходя из его описания. Но можно быстрее, если использовать функцию
для каждого элемента массива . Тогда мы получим время работы .function build(): for i = 0 to N - 1 modify(i, a[i])
Запрос получения значения функции на префиксе
Пусть существует некоторая бинарная операция
. Чтобы получить значение на отрезке , нужно провести операцию, обратную к , над значениями на отрезках и .В качестве бинарной операции
рассмотрим операцию сложения.Обозначим
. Тогда .Для нахождения
будем действовать следующим образом. Берём , которое является суммой элементов с индексами от до . Теперь к этому значению нужно прибавить . Аналогично продолжаем складывать, пока не не станет равным .Покажем, что запрос суммы работает за
. Рассмотрим двоичную запись числа . Функция заменила его последние единицы на нули (заметим, что количество нулей в конце станет больше, чем количество единиц в конце до этого). Теперь вычтем единицу из (переход к следующему столбику). Количество единиц в конце увеличилось, по сравнению с , так как мы заменили все нули в конце на единицы. Проводя эти действия дальше, мы придём к тому, что получили . В худшем случае мы должны были повторять эти операции раз, где — количество цифр в двоичной записи числа , что не превосходит . Значит, запрос суммы выполняется за .Реализация
Приведем код функции
:int sum(i): result = 0 while i >= 0 result += t[i] i = f(i) - 1 return result
Сравнение дерева Фенвика и дерева отрезков
- Дерево Фенвика занимает в константное значение раз меньше памяти, чем дерево отрезков. Это следует из того, что дерево Фенвика хранит только значение операции для каких-то элементов, а дерево отрезков хранит сами элементы и частичные результаты операции на подотрезках, поэтому оно занимает как минимум в два раза больше памяти.
- Дерево Фенвика проще в реализации.
- Операция на отрезке, для которой строится дерево Фенвика, должна быть обратимой, а это значит, что минимум (как и максимум) на отрезке это дерево считать не может, в отличие от дерева отрезков. Но если нам требуется найти минимум на префиксе, то дерево Фенвика справится с этой задачей. Такое дерево Фенвика поддерживает операцию уменьшения элементов массива. Пересчёт минимума в дереве происходит быстрее, чем обновление массива минимумов на префиксе.