Дерево Фенвика — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
(не показано 6 промежуточных версий 6 участников)
Строка 23: Строка 23:
 
{{Лемма
 
{{Лемма
 
|statement= Все такие <tex> i </tex>, для которых меняется <tex>T_i</tex> при изменении <tex>a_k</tex>, можно найти по формуле <tex>i_{next} = i_{prev}  \mid  (i_{prev} + 1) </tex>, где <tex> \mid </tex> — это операция побитового логического <tex> OR </tex>.
 
|statement= Все такие <tex> i </tex>, для которых меняется <tex>T_i</tex> при изменении <tex>a_k</tex>, можно найти по формуле <tex>i_{next} = i_{prev}  \mid  (i_{prev} + 1) </tex>, где <tex> \mid </tex> — это операция побитового логического <tex> OR </tex>.
|proof=Из доказанной выше леммы следует, что первый элемент последовательности само <tex> k </tex>. Для него выполняется равенство, так как <tex> F(i) \leqslant i </tex>. По формуле <tex>i_{next} = i_{prev}  \mid  (i_{prev} + 1) </tex> мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как <tex>F(i)</tex> осталось прежним или уменьшилось, а <tex> i </tex> увеличилось. <tex> F(i) </tex> не может увеличиться, так как функция <tex> F </tex> заменяет последние подряд идущие единицы числа <tex> i </tex> на нули, а по формуле <tex>i_{next} = i_{prev}  \mid  (i_{prev} + 1) </tex> у нового значения <tex> i </tex> увеличивается количество единиц в конце, что не может привести к увеличению <tex> F(i) </tex>. Докажем от противного, что нельзя рассматривать значения <tex> i </tex>, отличные от тех, которые мы получили по формуле. Рассмотрим две различные последовательности индексов. Первая последовательность получена по формуле, вторая — некоторая последовательность чисел, не превосходящие <tex>k</tex>. Возьмём число <tex> j </tex> из второй последовательности, которого нет в первой последовательности. Пусть <tex>F(j) \leqslant k </tex>. Уберём у <tex>j</tex> все подряд идущие единицы в конце двоичной записи, столько же цифр уберём в конце числа <tex>k</tex>. Обозначим их как <tex>j_{0}</tex> и <tex>k_{0}</tex>. Чтобы выполнялось условие <tex>F(j)  \leqslant k </tex>, должно выполняться неравенство <tex>j_{0} \leqslant k_{0}</tex>. Но если <tex>j_{0} < k_{0}</tex>, то и <tex>j \leqslant k</tex>, что противоречит условию <tex>j > k</tex>. Значит, <tex>j_{0} = k_{0}</tex>. Но тогда <tex>j</tex> возможно получить по формуле <tex>i_{next} = i_{prev}  \mid  (i_{prev} + 1) </tex>, следовательно, <tex>F(j) > k </tex>. Получили противоречие: <tex>j</tex> можно вычислить по формуле, а это значит, что оно содержится в первой последовательности. Таким образом, нужные элементы можно искать по формуле <tex>i_{next} = i_{prev}  \mid  (i_{prev} + 1) </tex>.
+
|proof=Из доказанной выше леммы следует, что первый элемент последовательности само <tex> k </tex>. Для него выполняется равенство, так как <tex> F(i) \leqslant i </tex>. По формуле <tex>i_{next} = i_{prev}  \mid  (i_{prev} + 1) </tex> мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как <tex>F(i)</tex> осталось прежним или уменьшилось, а <tex> i </tex> увеличилось. <tex> F(i) </tex> не может увеличиться, так как функция <tex> F </tex> заменяет последние подряд идущие единицы числа <tex> i </tex> на нули, а по формуле <tex>i_{next} = i_{prev}  \mid  (i_{prev} + 1) </tex> у нового значения <tex> i </tex> увеличивается количество единиц в конце, что не может привести к увеличению <tex> F(i) </tex>. Докажем от противного, что нельзя рассматривать значения <tex> i </tex>, отличные от тех, которые мы получили по формуле. Рассмотрим две различные последовательности индексов. Первая последовательность получена по формуле, вторая — некоторая последовательность чисел превосходящих <tex>k</tex>. Возьмём число <tex> j </tex> из второй последовательности, которого нет в первой последовательности. Пусть <tex>F(j) \leqslant k </tex>. Уберём у <tex>j</tex> все подряд идущие единицы в конце двоичной записи, столько же цифр уберём в конце числа <tex>k</tex>. Обозначим их как <tex>j_{0}</tex> и <tex>k_{0}</tex>. Чтобы выполнялось условие <tex>F(j)  \leqslant k </tex>, должно выполняться неравенство <tex>j_{0} \leqslant k_{0}</tex>. Но если <tex>j_{0} < k_{0}</tex>, то и <tex>j \leqslant k</tex>, что противоречит условию <tex>j > k</tex>. Значит, <tex>j_{0} = k_{0}</tex>. Но тогда <tex>j</tex> возможно получить по формуле <tex>i_{next} = i_{prev}  \mid  (i_{prev} + 1) </tex>, следовательно, <tex>F(j) > k </tex>. Получили противоречие: <tex>j</tex> можно вычислить по формуле, а это значит, что оно содержится в первой последовательности. Таким образом, нужные элементы можно искать по формуле <tex>i_{next} = i_{prev}  \mid  (i_{prev} + 1) </tex>.
 
}}
 
}}
  
Строка 86: Строка 86:
  
 
{| style="background-color:#CCC;margin:0.5px"
 
{| style="background-color:#CCC;margin:0.5px"
|style="background-color:#EEE;padding:2px 30px"| <tex>\i_{prev}</tex>
+
|style="background-color:#EEE;padding:2px 30px"| <tex>i_{prev}</tex>
 
|style="background-color:#FFF;padding:2px 30px"| <tex>\ldots 011 \ldots 1</tex>
 
|style="background-color:#FFF;padding:2px 30px"| <tex>\ldots 011 \ldots 1</tex>
 
|-
 
|-
Строка 125: Строка 125:
 
Обозначим <tex> G_i = \mathrm {sum(i)} = \sum\limits_{k = 0}^{i} a_k </tex>. Тогда <tex> \mathrm {sum(i, j)} = \sum\limits_{k = i}^{j} a_k = G_j - G_{i - 1} </tex>.
 
Обозначим <tex> G_i = \mathrm {sum(i)} = \sum\limits_{k = 0}^{i} a_k </tex>. Тогда <tex> \mathrm {sum(i, j)} = \sum\limits_{k = i}^{j} a_k = G_j - G_{i - 1} </tex>.
  
Для нахождения <tex>\mathrm {sum(i)}</tex> будем действовать следующим образом. Берём <tex>T_i</tex>, которое является суммой элементов с индексами от <tex>F(i)</tex> до <tex>i</tex>. Теперь к этому значению нужно прибавить <tex>\mathrm {sum(F(i) - 1)}</tex>. Аналогично продолжаем складывать, пока не <tex>F(j)</tex> не станет равным <tex>0</tex>.
+
Для нахождения <tex>\mathrm {sum(i)}</tex> будем действовать следующим образом. Берём <tex>T_i</tex>, которое является суммой элементов с индексами от <tex>F(i)</tex> до <tex>i</tex>. Теперь к этому значению нужно прибавить <tex>\mathrm {sum(F(i) - 1)}</tex>. Аналогично продолжаем складывать, пока не <tex>F(i)</tex> не станет равным <tex>0</tex>.
  
 
Покажем, что запрос суммы работает за <tex>O(\log{n})</tex>. Рассмотрим двоичную запись числа <tex>i</tex>. Функция <tex>F(i)</tex> заменила его последние единицы на нули (заметим, что количество нулей в конце станет больше, чем количество единиц в конце до этого). Теперь вычтем единицу из <tex>F(i)</tex> (переход к следующему столбику). Количество единиц в конце увеличилось, по сравнению с <tex>i</tex>, так как мы заменили все нули в конце на единицы. Проводя эти действия дальше, мы придём к тому, что получили <tex>0</tex>. В худшем случае мы должны были повторять эти операции <tex>l</tex> раз, где <tex>l</tex> — количество цифр в двоичной записи числа <tex>i</tex>, что не превосходит <tex>\log_{2}{i} + 1</tex>. Значит, запрос суммы выполняется за <tex>O(\log{n})</tex>.
 
Покажем, что запрос суммы работает за <tex>O(\log{n})</tex>. Рассмотрим двоичную запись числа <tex>i</tex>. Функция <tex>F(i)</tex> заменила его последние единицы на нули (заметим, что количество нулей в конце станет больше, чем количество единиц в конце до этого). Теперь вычтем единицу из <tex>F(i)</tex> (переход к следующему столбику). Количество единиц в конце увеличилось, по сравнению с <tex>i</tex>, так как мы заменили все нули в конце на единицы. Проводя эти действия дальше, мы придём к тому, что получили <tex>0</tex>. В худшем случае мы должны были повторять эти операции <tex>l</tex> раз, где <tex>l</tex> — количество цифр в двоичной записи числа <tex>i</tex>, что не превосходит <tex>\log_{2}{i} + 1</tex>. Значит, запрос суммы выполняется за <tex>O(\log{n})</tex>.
Строка 133: Строка 133:
 
  '''int''' sum(i):
 
  '''int''' sum(i):
 
     result = 0
 
     result = 0
     '''while''' f(i) >= 0
+
     '''while''' i >= 0
 
         result += t[i]
 
         result += t[i]
 
         i = f(i) - 1
 
         i = f(i) - 1
 +
    return result
  
 
==Сравнение дерева Фенвика и дерева отрезков==
 
==Сравнение дерева Фенвика и дерева отрезков==

Текущая версия на 19:18, 4 сентября 2022

Описание структуры

По горизонтали — индексы массива [math]T[/math]
([math]T_i[/math] является суммой элементов массива [math]A[/math], индексы которых заштрихованы),
по вертикали — индексы массива [math]A[/math]

Дерево Фе́нвика (англ. Binary indexed tree) — структура данных, требующая [math] O(n) [/math] памяти и позволяющая эффективно (за [math] O(\log n) [/math]) выполнять следующие операции:

Впервые описано Питером Фенвиком в 1994 году.

Пусть дан массив [math] A = [a_0, a_1, ... , a_{n - 1}][/math]. Деревом Фенвика будем называть массив [math] T [/math] из [math] n [/math] элементов: [math] T_i = \sum\limits_{k = F(i)}^{i} a_k[/math], где [math] i = 0 .. n - 1 [/math] и [math] F(i) [/math] — некоторая функция, от выбора которой зависит время работы операций над деревом. Рассмотрим функцию, позволяющую делать операции вставки и изменения элемента за время [math] O(\log n) [/math]. Она задается простой формулой: [math] F(i) = i \And (i + 1) [/math], где [math] \And [/math] — это операция побитового логического [math]AND[/math]. При [math]AND[/math] числа и его значения, увеличенного на единицу, мы получаем это число без последних подряд идущих единиц.

Эту функцию можно вычислять по другой формуле: [math] F(i) = i - 2^{h(i)} + 1, [/math] где [math] h(i) [/math] — количество подряд идущих единиц в конце бинарной записи числа [math] i [/math]. Оба варианта равносильны, так как функция, заданная какой-либо из этих формул, заменяет все подряд идущие единицы в конце числа на нули.

Запрос изменения элемента

Нам надо научиться быстро изменять частичные суммы в зависимости от того, как изменяются элементы. Рассмотрим как изменяется массив [math]T[/math] при изменении элемента [math]a_k[/math].

Лемма:
Для пересчёта дерева Фенвика при изменении величины [math]a_{k}[/math] необходимо изменить элементы дерева [math]T_{i}[/math], для индексов [math]i[/math] которых верно неравенство [math]F(i) \leqslant k \leqslant i[/math] .
Доказательство:
[math]\triangleright[/math]
[math] T_i =\sum\limits_{k = F(i)}^{i} a_k , i = 0 .. n - 1 \Rightarrow[/math] необходимо менять те [math]T_i[/math], для которых [math]a_{k}[/math] попадает в [math]T_i \Rightarrow[/math] необходимые [math] i [/math] удовлетворяют условию [math]F(i) \leqslant k \leqslant i[/math].
[math]\triangleleft[/math]
Лемма:
Все такие [math] i [/math], для которых меняется [math]T_i[/math] при изменении [math]a_k[/math], можно найти по формуле [math]i_{next} = i_{prev} \mid (i_{prev} + 1) [/math], где [math] \mid [/math] — это операция побитового логического [math] OR [/math].
Доказательство:
[math]\triangleright[/math]
Из доказанной выше леммы следует, что первый элемент последовательности само [math] k [/math]. Для него выполняется равенство, так как [math] F(i) \leqslant i [/math]. По формуле [math]i_{next} = i_{prev} \mid (i_{prev} + 1) [/math] мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как [math]F(i)[/math] осталось прежним или уменьшилось, а [math] i [/math] увеличилось. [math] F(i) [/math] не может увеличиться, так как функция [math] F [/math] заменяет последние подряд идущие единицы числа [math] i [/math] на нули, а по формуле [math]i_{next} = i_{prev} \mid (i_{prev} + 1) [/math] у нового значения [math] i [/math] увеличивается количество единиц в конце, что не может привести к увеличению [math] F(i) [/math]. Докажем от противного, что нельзя рассматривать значения [math] i [/math], отличные от тех, которые мы получили по формуле. Рассмотрим две различные последовательности индексов. Первая последовательность получена по формуле, вторая — некоторая последовательность чисел превосходящих [math]k[/math]. Возьмём число [math] j [/math] из второй последовательности, которого нет в первой последовательности. Пусть [math]F(j) \leqslant k [/math]. Уберём у [math]j[/math] все подряд идущие единицы в конце двоичной записи, столько же цифр уберём в конце числа [math]k[/math]. Обозначим их как [math]j_{0}[/math] и [math]k_{0}[/math]. Чтобы выполнялось условие [math]F(j) \leqslant k [/math], должно выполняться неравенство [math]j_{0} \leqslant k_{0}[/math]. Но если [math]j_{0} \lt k_{0}[/math], то и [math]j \leqslant k[/math], что противоречит условию [math]j \gt k[/math]. Значит, [math]j_{0} = k_{0}[/math]. Но тогда [math]j[/math] возможно получить по формуле [math]i_{next} = i_{prev} \mid (i_{prev} + 1) [/math], следовательно, [math]F(j) \gt k [/math]. Получили противоречие: [math]j[/math] можно вычислить по формуле, а это значит, что оно содержится в первой последовательности. Таким образом, нужные элементы можно искать по формуле [math]i_{next} = i_{prev} \mid (i_{prev} + 1) [/math].
[math]\triangleleft[/math]

Заметим, что [math]F(i)[/math] возрастает немонотонно. Поэтому нельзя просто перебирать значения от [math] k [/math], пока не нарушается условие. Например, пусть [math] k = 3 [/math]. При данной стратегии на следующем шаге ([math] i = 4[/math]) нарушится условие и мы прекратим пересчитывать [math] T_i [/math]. Но тогда мы упускаем остальные значения [math]i[/math], например [math] 7 [/math].

[math]i[/math], десятичная запись [math]0[/math] [math]1[/math] [math]2[/math] [math]3[/math] [math]4[/math] [math]5[/math] [math]6[/math] [math]7[/math] [math]8[/math] [math]9[/math] [math]10[/math]
[math]i[/math], двоичная запись [math]0000[/math] [math]0001[/math] [math]0010[/math] [math]0011[/math] [math]0100[/math] [math]0101[/math] [math]0110[/math] [math]0111[/math] [math]1000[/math] [math]1001[/math] [math]1010[/math]
[math]F(i)[/math], двоичная запись [math]0000[/math] [math]0000[/math] [math]0010[/math] [math]0000[/math] [math]0100[/math] [math]0100[/math] [math]0110[/math] [math]0000[/math] [math]1000[/math] [math]1000[/math] [math]1010[/math]
[math]F(i)[/math], десятичная запись [math]0[/math] [math]0[/math] [math]2[/math] [math]0[/math] [math]4[/math] [math]4[/math] [math]6[/math] [math]0[/math] [math]8[/math] [math]8[/math] [math]10[/math]


Все [math]i[/math] мы можем получить следующим образом: [math]i_{next} = i_{prev} \mid (i_{prev} + 1) [/math]. Следующим элементом в последовательности будет элемент, у которого первый с конца ноль превратится в единицу. Можно заметить, что если к исходному элементу прибавить единицу, то необходимый ноль обратится в единицу, но при этом все следующие единицы обнулятся. Чтобы обратно их превратить в единицы, применим операцию [math]OR[/math]. Таким образом все нули в конце превратятся в единицы и мы получим нужный элемент. Для того, чтобы понять, что эта последовательность верна, достаточно посмотреть на таблицу.

[math]i_{prev}[/math] [math]\ldots 011 \ldots 1[/math]
[math]i_{prev} + 1[/math] [math]\ldots 100 \ldots 0[/math]
[math]i_{next}[/math] [math]\ldots 111 \ldots 1[/math]

Несложно заметить, что данная последовательность строго возрастает и в худшем случае будет применена логарифм раз, так как добавляет каждый раз по одной единице в двоичном разложении числа [math]i[/math].

Напишем функцию, которая будет прибавлять к элементу [math]a_i[/math] число [math]d[/math], и при этом меняет соответствующие частичные суммы. Так как наш массив содержит [math]N[/math] элементов, то мы будем искать [math]i_{next}[/math] до тех пор, пока оно не превышает значение [math]N[/math].

function modify(i, d):
   while i < N
       t[i] += d
       i = i | (i + 1)

Часто можно встретить задачу, где требуется заменить значение элемента [math]a_i[/math] на [math]x[/math]. Заметим, что если вычислить разность [math]x[/math] и [math]a_{i}[/math], то можно свести эту задачу к операции прибавления [math]d[/math] к [math]a_i[/math].

function set(i, x):
   d = x - a[i]
   a[i] = x
   modify(i, d)

Построение дерева можно осуществить, исходя из его описания. Но можно быстрее, если использовать функцию [math]\mathrm {modify}[/math] для каждого элемента массива [math]A[/math]. Тогда мы получим время работы [math]O(n \log {n})[/math].

function build():
   for i = 0 to N - 1
       modify(i, a[i])

Запрос получения значения функции на префиксе

Пусть существует некоторая бинарная операция [math]\circ[/math]. Чтобы получить значение на отрезке [math][i, j][/math], нужно провести операцию, обратную к [math]\circ[/math], над значениями на отрезках [math][0, j][/math] и [math][0, i - 1][/math].

В качестве бинарной операции [math] \circ [/math] рассмотрим операцию сложения.

Обозначим [math] G_i = \mathrm {sum(i)} = \sum\limits_{k = 0}^{i} a_k [/math]. Тогда [math] \mathrm {sum(i, j)} = \sum\limits_{k = i}^{j} a_k = G_j - G_{i - 1} [/math].

Для нахождения [math]\mathrm {sum(i)}[/math] будем действовать следующим образом. Берём [math]T_i[/math], которое является суммой элементов с индексами от [math]F(i)[/math] до [math]i[/math]. Теперь к этому значению нужно прибавить [math]\mathrm {sum(F(i) - 1)}[/math]. Аналогично продолжаем складывать, пока не [math]F(i)[/math] не станет равным [math]0[/math].

Покажем, что запрос суммы работает за [math]O(\log{n})[/math]. Рассмотрим двоичную запись числа [math]i[/math]. Функция [math]F(i)[/math] заменила его последние единицы на нули (заметим, что количество нулей в конце станет больше, чем количество единиц в конце до этого). Теперь вычтем единицу из [math]F(i)[/math] (переход к следующему столбику). Количество единиц в конце увеличилось, по сравнению с [math]i[/math], так как мы заменили все нули в конце на единицы. Проводя эти действия дальше, мы придём к тому, что получили [math]0[/math]. В худшем случае мы должны были повторять эти операции [math]l[/math] раз, где [math]l[/math] — количество цифр в двоичной записи числа [math]i[/math], что не превосходит [math]\log_{2}{i} + 1[/math]. Значит, запрос суммы выполняется за [math]O(\log{n})[/math].

Реализация

Приведем код функции [math] \mathrm {sum(i)} [/math]:

int sum(i):
   result = 0
   while i >= 0
       result += t[i]
       i = f(i) - 1
   return result

Сравнение дерева Фенвика и дерева отрезков

  • Дерево Фенвика занимает в константное значение раз меньше памяти, чем дерево отрезков. Это следует из того, что дерево Фенвика хранит только значение операции для каких-то элементов, а дерево отрезков хранит сами элементы и частичные результаты операции на подотрезках, поэтому оно занимает как минимум в два раза больше памяти.
  • Дерево Фенвика проще в реализации.
  • Операция на отрезке, для которой строится дерево Фенвика, должна быть обратимой, а это значит, что минимум (как и максимум) на отрезке это дерево считать не может, в отличие от дерева отрезков. Но если нам требуется найти минимум на префиксе, то дерево Фенвика справится с этой задачей. Такое дерево Фенвика поддерживает операцию уменьшения элементов массива. Пересчёт минимума в дереве происходит быстрее, чем обновление массива минимумов на префиксе.

См. также

Источники информации