Изменения

Перейти к: навигация, поиск
м
rollbackEdits.php mass rollback
{{Определение
|definition =
Пусть <tex>M_1 = \langle X, I_1 \rangle </tex> и <tex> M_2 = \langle X, I_2 \rangle </tex> {{---}} два матроида на множестве элементов <tex>X</tex> с наборами независимых множеств <tex>I_1</tex> и <tex>I_2</tex>. Положим <tex> I = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \mathcal {g} </tex>. Множество <tex>I</tex> удовлетворяет [[Объединение матроидов, доказательство того, что объединение является матроидом|аксиомам независимости]], следовательно, <tex>\langle X, I \rangle </tex> {{---}} матроид, для которого <tex>I</tex> служит набором независимых множеств. Этот матроид называется '''объединением матроидов''' (англ. ''matroid union'') <tex>M_1</tex> и <tex>M_2</tex>, и обозначается <tex>M = M_1 \cup M_2 </tex>
}}
Обычно термин «объединение» применяется, когда носители <tex>X</tex> в обоих матроидах одинаковы, однако это не является необходимым, мы можем дополнить их до объединения, заметим, что от этого <tex>M_1</tex> и <tex>M_2</tex> не перестанут быть матроидами. Если в <tex>M_1</tex> и <tex>M_2</tex> носители непересекающиеся, то это будет являться [[Прямая сумма матроидов|прямой суммой матроидов]].
Таким образом, мы свели задачу о проверке множества на независимость в объединении к нахождению мощности максимального независимого множества в пересечении матроидов <tex>M_{\oplus}</tex> и <tex>M_{P_1}</tex>. С помощью [[Алгоритм построения базы в пересечении матроидов|алгоритма построения базы в пересечении матроидов]] найдем размер максимального подмножества <tex>U' \mid P_1(U') = U</tex> в пересечении наборов независимых множеств матроидов.
==Доказательство того, что обединение объединение матроидов является матродидом==
{{Определение
|definition =
# <tex>\varnothing \in I_1</tex> <br /><tex> \varnothing = f(\varnothing) \in I_1 </tex>
# <tex>B \subset A, A \in I_1 \Rightarrow B \in I_1</tex><br /><tex>A \in I_1</tex>, значит <tex>9 \exists S, S \in I</tex>, такое, что <tex> A = f(S)</tex>. <tex>B = f(S \setminus f^{-1} (A \setminus B)), (S \setminus f^{-1} (A \setminus B)) \subset S \Rightarrow (S \setminus f^{-1} (A \setminus B)) \in I</tex>. Значит <tex>B \in I_1</tex>.# Пусть <tex> A \in I_1, A = f(S), B \in I_1, B = f(T), |A| > |B|</tex>. Докажем, что <tex>9 \exists y \in A \setminus B, B \cup \{ y \} \in I_1</tex><br /><tex>A = f(S) \Rightarrow 9 \exists S_1 \subset S, A = f(S_1), |S_1| = |A| </tex>.<br /><tex>B = f(T) \Rightarrow 9 \exists T_1 \subset T, B = f(T_1), |T_1| = |B| </tex>.<br /><tex>S_1 \in I, T_1 \in I</tex> по второй аксиоме для <tex>M</tex>.<br /><tex> |S_1| > |T_1| </tex>, значит по третьей аксиоме для <tex>M</tex>, <tex>9 \exists x \in S_1 \setminus T_1, T_1 \cup \{ x \} \in I</tex>. Следовательно <tex>f(T_1 \cup \{ x \}) \in I_1</tex>.<br /><tex>f(T_1 \cup \{ x \}) = f(T_1) \cup f(x) = B \cup f(x)</tex>. Значит <tex>9 \exists y = f(x) \in A \setminus B , B \cup \{ y \} \in I_1</tex>
}}
1632
правки

Навигация