|statement= Пусть <tex>B_1</tex> и <tex>B_2</tex> — базы матроида <tex>M</tex>. Тогда <tex>|B_1| = |B_2|</tex>.
|proof=
Докажем Доказательство от противного.Пусть <tex>|B_1| > |B_2|</tex>. Тогда по третьей аксиоме из [[Определение матроида|определения матроида]] <tex>\exists x \in B_1 \setminus B_2</tex> такой, что <tex>B_2 \cup {x} \in I</tex>. То есть <tex>B_2</tex> — не максимальное по включению независимое множество, что противоречит определению базы. Случай <tex>|B_2| > |B_1|</tex> разбирается аналогично.
}}