1632
правки
Изменения
м
{{В разработке}}Пусть задано множество точек <tex>S</tex> из пространства <tex>\mathbb R^n</tex>. Пусть односвязная область <tex>R \subset \mathbb R^n</tex> такова, что её границы ортогональны координатным прямым. Требуется определить множество точек <tex>S' \subset S</tex>, лежащих в области <tex>R</tex>.== Простейший Одномерный случай ==
Данная На практике для быстрого осуществления запроса нужно хранить точки в отсортированном массиве и пользоваться двоичным поиском. В C++ данная задача решается с помощью функций из STL - upper_bound и lower_bound.
== Сбалансированное дерево поиска ==Алгоритм работает за <tex>O(\log n + T)</tex>, где <tex>T</tex> - количество точек в ответе.<br>
Переходим к двумерному случаю'''Примечание:''' Если задача сформулирована так, что нужно вывести все искомые точки, то запрос не может выполняться быстрее, чем за <tex>O(T)</tex>. Однако, далеко не во всех задачах ортогонального поиска нужно получать все точки в явном виде. Поэтому далее время, необходимое для вывода полного ответа, будет опускаться в оценке времени запроса. == Двумерный случай == Пусть дано некоторое множество точек на плоскости. Нам необходимо ответить, какие именно из них лежат в некотором заданном прямоугольнике.
В Рассмотрим, как в такой структуре данных будет выглядеть поиск множества точек , находящихся в заданном прямоугольнике <tex>([x_{min}, x_{max}) ] \times ([y_{min}, y_{max})]</tex> будет выглядеть следующим образом:# Выберем из дерева поиска . Для начала, найдем в дереве те точки, <tex>x</tex>-координата которых лежит в интервале <tex>([x_{min}, x_{max})]</tex>. Сделаем это точно так следующим образом: # Найдем в дереве поиска вершины с минимальной и максимальной <tex>x</tex>-координатой из прямоугольника запроса, добавим их в искомое множество, обозначим их как <tex>v_l</tex> и <tex>v_r</tex>. # Добавим в искомое множество их наименьшего общего предка <tex>v_n</tex>.# Для каждой из промежуточных вершин <tex>v_i</tex> на восходящем пути <tex>v_l \to v_n</tex> зафиксируем, из какого ребенка мы поднялись в вершину <tex>v_i</tex>. Если мы поднялись из левого сына, то добавим в искомое множество саму вершину <tex>v_i</tex>, а также множество точек, находящихся в поддереве правого сына вершины <tex>v_i</tex>. Если жемы поднялись из правого сына, то не добавляем ничего.# Повторим процесс для пути <tex>v_r \to v_n</tex>. Здесь ориентация сторон инвертирована: будем пополнять множество в том случае, как делается если мы поднялись из правого сына.Пример процесса показан на иллюстрации:<br>[[Реализация запроса в дереве отрезков сверхуФайл:ortog_search_tree2.png|запрос сверху в дереве отрезков700px]]. Из аналогии с деревом отрезков следует<br>В итоге, что ответ в множество мы получим в виде добавим <tex>O(\log n)</tex> вершин и <tex>O(\log n)</tex> поддеревьев дерева поиска.# Теперь нужно просеять полученное множество — извлечь из него те элементы, <tex>y</tex>-координата которых не лежит в интервале <tex>[y_{min}, y_{max}]</tex>. Для точек это сделать просто — нужно вручную проверить, лежит ли <tex>y</tex>-координата в нужном интервале. Для каждого из полученных поддеревьев обратимся к массиву содержащихся в нем точек и запустим от него приведенную выше функцию <tex>range{\_}search(y_{min}, y_{max})</tex>. Все полученные таким образом точки и будут составлять ответ.<br>Каждая из функций <tex>range{\_}search(y_{TODO| t=запилить красивую и понятную картинкуmin}, y_{max})</tex> будет работать в худшем случае за <tex>O(\log n)</tex>, отсюда получаем итоговое время выполнения запроса <tex>O(\log^2 n)</tex>. Что касается памяти, то в сбалансированном дереве поиска <tex>O(\log n)</tex> слоев, а каждый слой хранит массивы, содержащие в сумме ровно <tex>n</tex> точек, соответственно вся структура в целом занимает <tex>O(n\log n)</tex> памяти.
Каждая из функций <tex>range{\_}search(y_{min}, y_{max})</tex> будет работать в худшем случае за <tex>O(\log n)</tex>, отсюда получаем итоговое время выполнения запроса <tex>O(\log^2 n)</tex>. Что касается памяти, то в сбалансированном дереве поиска <tex>O(\log n)</tex> слоев, а каждый слой хранит массивы, содержащие в сумме ровно <tex>n</tex> точек, соответственно вся структура в целом занимает <tex>O(n\log n)</tex> памяти.== Обобщение для p-мерного пространства ==
== Инкрементальное квадро дерево ==[[Категория: Вычислительная геометрия]]
rollbackEdits.php mass rollback
Пусть дана прямая с точками на ней и отрезок. Точки даны в отсортированном порядке. Необходимо указать, какие из изначальных точек лежат на этом отрезке.
[[Файл:Line_with_dots_and_segment.png]]<br>Задача тривиальна — нужно оставить только те точки, которые лежат между началом и концом отрезка.
lower_bound возвращает итератор на первый элемент, больший либо равный данного. <br>
Рассмотрим на примере:
[[Файл:Upper_bound_and_lower_bound1Upper_bound_and_lower_bound2.png|600px]]
Код реализации:
}
Для этого возьмем любое сбалансированное дерево поиска и наполним его точками <tex>(x, y)</tex> из множества. В качестве ключа будет использоваться <tex>x</tex>-координата точки. Теперь модернизируем дерево: в каждой вершине дерева будем хранить отсортированный по <tex>y</tex>-координате массив точек, которые содержатся в соответствующем поддереве. <br>Рассмотрим на примере:<br>
[[Файл:ortog_search_tree.png|600px]]<br>
Такую структуру данных можно при необходимости обобщить на случай большей размерности. Пусть у нас есть множество точек из <tex>p</tex>-мерного пространства, каждая из которых представляется как <tex>n</tex> координатных чисел: <tex>(\xi_1, \xi_2, ... , \xi_p)</tex>. Тогда, строя дерево поиска по координате <tex>\xi_i</tex>, в каждой вершине будем хранить другое дерево поиска с ключом <tex>\xi_{i+1}</tex>, составленное из точек, лежащих в соответствующем поддереве. В дереве поиска, составленном по предпоследней координате <tex>\xi_{p-1}</tex>, уже не будет необходимости хранить в каждой вершине целое дерево, поскольку при переходе на последнюю координату <tex>\xi_{p}</tex> дальнейший поиск производиться не будет, поэтому в вершинах будем хранить массивы, так же, как и в двумерном случае. Оценим занимаемую память и время запроса: при добавлении следующей координаты асимптотика обеих величин умножается на <tex>\log n</tex>. Отсюда, получаем оценку <tex>O(\log^{p} n)</tex> на время запроса и <tex>O(n\log^{p-1} n)</tex> на занимаемую память.
Такой же результат можно получить с помощью [[Сжатое многомерное дерево отрезков|сжатого многомерного дерева отрезков]].
== Прошитые отсортированные массивы Ускорение запроса ==Для ускорения запроса можно "прошить" дерево поискапо предпоследней координате, а именно: каждый элемент массива, сохраненного в какой-либо вершине, соединить с элементами массивов, сохраненных в вершинах-детях. Соединять будем по следующему принципу: элемент <tex>(x, y)</tex> массива-предка соединим с элементами <tex>upper\_bound(y)</tex> и <tex>lower\_bound(y)</tex> каждого массива-ребенка. Тогда для Ниже представлен пример соединения корня с его левым сыном:<br>[[Файл:ortog_search_tree3.png]]<br>Для выполнения завершающей фазы поиска нам достаточно будет посчитать <tex>upper\_bound()</tex> и <tex>lower\_bound()</tex> только на массиве, привязанному к корню дерева. Для получения границ на других массивах можно будет просто спуститься по ссылкам от массива. Заметим, что все вершины, к массивам которых нужно перейти, смежны с какой-предка за либо из вершин путей <tex>v_l \to v_n</tex> или <tex>v_r \to v_n</tex>. Отсюда следует, что число спусков оценивается как <tex>O(1length(v_l \to v_n) + length(v_r \to v_n)) = O(\log n)</tex>. <br>Таким образом, поиск теперь будет выполняться за <tex>O(\log^{p-1} n)</tex>, где <tex>p</tex> — размерность пространства.{{TODO| t=здесь тоже надо что-нибудь нарисовать}} == Квадро дерево ==