Алгоритм масштабирования потока — различия между версиями
Zemskovk (обсуждение | вклад) м (→Оценка времени работы) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 2 промежуточные версии 2 участников) | |||
Строка 1: | Строка 1: | ||
== Алгоритм == | == Алгоритм == | ||
− | Пусть дана [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|сеть]] <tex> G </tex>, все | + | Пусть дана [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|сеть]] <tex> G </tex>, все рёбра которой имеют целочисленную [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|пропускную способность]]. Обозначим за <tex> U </tex> максимальную пропускную способность: <tex> U = \max\limits_{(u, v) \in E} c(u, v) </tex>. |
Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BF.D0.BE.D1.82.D0.BE.D0.BA.D0.B0|поток]] по ним, а затем по всем остальным. Для этого воспользуемся масштабом <tex> \Delta </tex>. Изначально положим <tex> \Delta = 2^{\lfloor \log_2 U \rfloor} </tex>. | Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D0.BF.D0.BE.D1.82.D0.BE.D0.BA.D0.B0|поток]] по ним, а затем по всем остальным. Для этого воспользуемся масштабом <tex> \Delta </tex>. Изначально положим <tex> \Delta = 2^{\lfloor \log_2 U \rfloor} </tex>. | ||
Строка 26: | Строка 26: | ||
В конце итерации с масштабом <tex> \Delta = 2^k </tex>, сеть <tex> G_{f_k} </tex> может быть разбита на два непересекающихся множества <tex> A_k </tex> и <tex> \overline{A_k} </tex> так, что остаточная пропускная способность каждого ребра, идущего из <tex> A_k </tex> в <tex> \overline{A_k} </tex>, не превосходит масштаба <tex> \Delta </tex>. То есть образуется [[Разрез,_лемма_о_потоке_через_разрез|разрез]] <tex> C_k = \langle A_k, \overline{A_k} \rangle </tex>. | В конце итерации с масштабом <tex> \Delta = 2^k </tex>, сеть <tex> G_{f_k} </tex> может быть разбита на два непересекающихся множества <tex> A_k </tex> и <tex> \overline{A_k} </tex> так, что остаточная пропускная способность каждого ребра, идущего из <tex> A_k </tex> в <tex> \overline{A_k} </tex>, не превосходит масштаба <tex> \Delta </tex>. То есть образуется [[Разрез,_лемма_о_потоке_через_разрез|разрез]] <tex> C_k = \langle A_k, \overline{A_k} \rangle </tex>. | ||
− | При этом, количество таких | + | При этом, количество таких рёбер не превосходит <tex> E </tex>. |
Значит, значение остаточного потока не может превосходить <tex> \Delta E = 2^k E </tex>. | Значит, значение остаточного потока не может превосходить <tex> \Delta E = 2^k E </tex>. | ||
}} | }} |
Текущая версия на 19:21, 4 сентября 2022
Алгоритм
Пусть дана сеть , все рёбра которой имеют целочисленную пропускную способность. Обозначим за максимальную пропускную способность: .
Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать поток по ним, а затем по всем остальным. Для этого воспользуемся масштабом . Изначально положим .
На каждой итерации в дополняющей сети алгоритм находит дополняющие пути с пропускной способностью не меньшей и увеличивает поток вдоль них. Уменьшив масштаб в раза, переходит к следующей итерации.
Очевидно, что при Эдмондса-Карпа, вследствие чего является корректным.
алгоритм вырождается в алгоритмКоличество необходимых увеличений путей, основанных на кратчайших путях, может быть много больше количества увеличений, основанных на путях с высокой пропускной способностью.
Оценка времени работы
Лемма (1): |
Максимальный поток в сети ограничен сверху значением , где — значение потока при масштабе . |
Доказательство: |
В конце итерации с масштабом разрез . , сеть может быть разбита на два непересекающихся множества и так, что остаточная пропускная способность каждого ребра, идущего из в , не превосходит масштаба . То есть образуетсяПри этом, количество таких рёбер не превосходит Значит, значение остаточного потока не может превосходить . . |
Лемма (2): |
Суммарное количество увеличивающих путей — . |
Доказательство: |
На некоторой итерации алгоритма каждый дополняющий путь имеет пропускную способность не меньше Дополняющий поток на предыдущем шаге ограничен значением . . Следовательно, на каждой итерации количество дополняющих путей не превосходит . |
Утверждение: |
Время работы алгоритма — . |
В ходе выполнения алгоритма масштаб принимает следующие значения: . Тогда — количество итераций алгоритма.Количество итераций алгоритма — Алгоритм , значит, суммарное количество увеличивающих путей — . обхода в ширину находит каждый дополняющий путь за время . Следовательно, суммарное время работы алгоритма — . |
Псевдокод
function maxFlowByScaling(G: graph, s: int, t: int): int int flow = 0 // поток в сети int scale =// текущий минимальный размер потока, который пытаемся пустить while scale 1 while в существует увеличивающий путь с пропускной способностью не меньше, чем scale int minCapacity = // минимальная пропускная способность в увеличивающем пути увеличить поток по рёбрам на minCapacity обновить flow = flow + minCapacity scale = scale / 2 return flow