Изменения

Перейти к: навигация, поиск

Дискретная случайная величина

2610 байт добавлено, 19:22, 4 сентября 2022
м
rollbackEdits.php mass rollback
===Примеры===
Проще говоря, дискретные случайные величины {{---}} это величины, значения количество значений которых можно пересчитать. Например:
# Число попаданий в мишень при <tex>n</tex> выстрелах. Принимаемые значения <tex>0 \ldots n</tex>
# Количество выпавших орлов при <tex>n</tex> бросков монетки. Принимаемые значения <tex>0 \ldots n</tex>
# Количество выученных билетовЧисло очков, число звонков, поступавших на телефонную станцию в течение месяца. Принимаемые значения также <tex>0 \ldots n</tex> # Сумма выигрыша в лотерее, если выпущено <tex>1000</tex> лотерейных билетов: на <tex>5</tex> из них выпадает выигрыш в сумме <tex>500</tex>, на <tex>10</tex> {{---}} <tex>100</tex> рублей, на <tex>20</tex> {{---}} <tex>50</tex>, на <tex>50</tex> {{---}} <tex>10</tex>выпавших при бросании игральной кости. Случайная величина принимает одно из значений {{---}} <tex>\{0, 10, 50, 100, 500\}</tex> В качестве примеров можно привести число количество выученных билетов (среди конечного числа билетов), число звонков, поступавших на телефонную станцию в течение месяца (<tex>1, 2, 3, 4,5,6\ldots}</tex>).
Существуют также непрерывные случайные величины. Например, координаты точки попадания при выстреле.
{{Определение
|definition =
'''Функция распределения случайной величины''' (англ. ''cumulative distribution function (CDF)'') {{---}} функция <tex>F(x)</tex>, определённая на <tex>\mathbb{R}</tex> как <tex>P(\xi < \leqslant x)</tex>, т.е. выражающая вероятность того, что <tex>\xi</tex> примет значение, меньшее чем или равное <tex>x</tex> }}
Если случайная величина <tex>\xi</tex> дискретна, то есть её распределение однозначно задаётся функцией <tex>\mathbb{P}(\xi = x_i) = p_i,\; i=1,2,\ldots</tex> Функция распределения <math>F(x)</math> этой случайной величины кусочно-постоянна и может быть записана как <tex>F(x) = \sum\limits_{i:~x_i \leqslant x} p_i</tex>. Свойства функции распределениядискретной случайной величины:
*<tex>F(x_1)\leqslant F(x_2)</tex> при <tex>x_1 \leqslant x_2;</tex>
*<tex>F(x)</tex> непрерывна слева во всех точках <tex>\forall x \in \mathbb{R};</tex>, таких что <tex>\forall i ~ x \ne x_i </tex>, и имеет разрыв первого рода в точках, таких что <tex>\forall i ~ x = x_i</tex>.
*<tex>\lim\limits_{x \to -\infty} F(x) = 0, \lim\limits_{x \to +\infty} F(x) = 1</tex>.
===Примеры===#Найдем функцию распределения количества попаданий в мишень. Пусть у нас есть <tex>n</tex> выстрелов, вероятность попадания равна <tex>p</tex>. Необходимо найти <tex>F(k)</tex>. Для <tex>k < 0 ~ F(k) = 0</tex>, так как нельзя попасть в мишень отрицательное число раз. Для <tex>k \geqslant 0 ~ F(k) = \sum\limits_{i = 0}^{\min(n, \lceil k \rceil - 1) }\dbinom{n}{i}p^{i} (1-p)^{ n - i}</tex>#Аналогичное решение имеет функция распределения числа выпавших орлов при броске монеты, если шанс выпадения орла {{---}} <tex>p</tex>. #Найдем функцию распределения числа очков, выпавших при бросании игральной кости. Пусть у нас есть вероятности выпадения чисел <tex>1 \ldots 6</tex> соответственно равны <tex>p_{1} \ldots p_{6}</tex>. Для <tex>k < 1 ~ F(k) = 0</tex>, так как не может выпасть цифра меньше <tex>1</tex>. Для <tex>k \geqslant 1 ~ F(k) = \sum\limits_{i = 1}^{\min(6,\lceil k \rceil - 1) }p_{i}</tex> В отличие от дискретной случайной величины, непрерывная случайная величина может принять любое действительное значение из некоторого промежутка ненулевой длины, что делает невозможным её представление в виде таблицы или перечисления состояний. Поэтому ее часто явно задают через функцию распределения, например <tex>F(x) = \begin{cases}0, & x < 0 \\\dfrac{x^{2}}{9}, & 0 \leqslant x \leqslant 3\\1, & x > 3 \end{cases}</tex> ==Функция плотности вероятностираспределения вероятностей==
{{Определение
|definition =
'''Функция плотности вероятностираспределения вероятностей''' (англ. ''Probability density function'') {{---}} функция <tex>f(x)</tex>, определённая на <tex>\mathbb{R}</tex> как первая производная функции распределения.
:<tex>f(x) = F'(x)</tex> }}
*Плотность вероятности определена почти всюду.
:Иными словами, множество точек, для которых она не определена, имеет меру ноль.
 
Для примера выше <tex>
f(x)=F'(x) = \begin{cases}
(0)', & x < 0 \\
\left(\dfrac{x^{2}}{9} \right)', & 0 \leqslant x \leqslant 3\\
(1)', & x > 3
\end{cases} =
\begin{cases}
0, & x < 0 \\
\dfrac{2x}{9}, & 0 \leqslant x \leqslant 3\\
0, & x > 3
\end{cases}
</tex>
 
Для дискретной случайной величины '''не''' существует функции плотности распределения вероятностей, так как такая случайная величина не является абсолютно непрерывной функцией.
== См. также ==
1632
правки

Навигация