1632
правки
Изменения
м
|about=
Дифференцирование сложной функции
rollbackEdits.php mass rollback
Тогда <tex>\mathcal{A}(x) = \mathcal{F}'(x)</tex> {{---}} '''производная Фреше''' отображения <tex>\mathcal{F}</tex> в точке <tex>x</tex>.
}}
При <tex> X = Y = \mathbb{R} </tex> получаем определение дифференциала и производной функции одной переменной.
Установим теорему, обобщающую классическое правило дифференцирования сложной функции :
{{Теорема
|statement=
Композиция дифференцируемых отображений дифференцируема. Производная Фреше равна композиции производных Фреше отображений. Пусть <tex>y = f\mathcal{F} : V_r(x)</tex> дифференцируема в точке <tex>x_0</tex>\to Y, <tex>y_0 y = f\mathcal{F}(x_0x)</tex>. Пусть <tex>z = g, \mathcal{G} : V_{r_1}(y)</tex> дифференцируема в <tex>y_0</tex>. Тогда в некоторой окрестности <tex>x_0</tex> корректно определена сложная функция <tex>z = g(f\to Z \quad \exists \mathcal{F}'(x), \mathcal{G}'(y), \mathcal{T} = \mathcal{G} \circ \mathcal{F}</tex> и её производная равна , тогда <tex>z\exists \mathcal{T}' (x) = g\mathcal{G}'(y_0y)f\mathcal{F}'(x_0x)</tex>.
|proof=
Доказательство копирует классическое доказательство, с заменой знака модуля на знак нормы.
}}
конец теоремы, далее следует продолжение конспекта про отображения в НП
}}
По доказанному ранее, для <tex>\mathcal{F}(\overline{b}) - \mathcal{F}(\overline{a}) \in \mathbb{R}^m </tex> существует линейный непрерывный функционал <tex>\varphi : \varphi(\mathcal{F}(\overline{a}) - \mathcal{F}(\overline{b})) = \left|\left|\mathcal{F}(\overline{a}) - \mathcal{F}(\overline{b})\right|\right|, \quad \|\varphi\| = 1</tex>
Докажем, что <tex>\varphi = \varphi'</tex>. Так как <tex>\varphi</tex> {{---}} линейный оператор, то <tex>\varphi(\bar x) = \varphi(x_1, x_2, \ldots, x_n) = \sum\limits_{k=1}^n a_k x_k</tex>. То есть, оператор <tex>\varphi</tex> можно представить как строку <tex>(a_1, a_2, \ldots, a_n)</tex>. Рассмотрим <tex>\varphi'</tex>. Построим матрицу Якоби для производной. <tex> \varphi' = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} )</tex>. Посчитаем первую координату производной <tex>\frac{\partial f}{\partial x_1} = \frac{\partial}{\partial x_1} \sum\limits_{k=1}^n a_k x_k = \sum\limits_{k=1}^n \frac{a_k \partial x_k}{x_1} = a_1 \frac{\partial x_1}{\partial x_1} = a_1</tex>. Мы получили полное благорастворение! Первая координата оператора и его производной совпали. Аналогично совпадают остальные координаты. Значит, <tex>\varphi = \varphi'</tex>.
<tex>g(t) = \varphi(\mathcal{F}(\overline{a} + t(\overline{b} - \overline{a}))), \quad t \in [0, 1]</tex>
Нужно доказать, что вторая сумма {{---}} <tex>o(\Delta a)</tex>, ибо первая сумма и есть формально записанный дифференциал. По неравенству Коши для сумм :
<tex>\left|\sum\limits_{j = 1}^{n}\alpha_j(\Delta\overline{a})\cdot\Delta a_j\right| \le \sqrt{\sum\limits_{j = 1}^{n}\alpha_j^2(\Delta \overline{a})}\|\Delta \overline{a}_j\|</tex>
Выражение под корнем стремится к нулю, таким образом, получаем требуемое.