1632
правки
Изменения
м
==Постановка задачи==[[Файл:Figure_5Это означает, что условие <tex>\sum\limits_{i \in A} p_i \leqslant Th(A), \forall A \subseteq \{ 1, ... , n \}</tex> выполняется и требования к обработке <tex>x_{1K}, . . ., x_{nK}</tex> могут быть запланированы как <tex>I_K</tex> для <tex>K = 2, . . .png|400px|thumb|right|Рис, r</tex>. 1]]Рассмотрим еще одну задачу на нахождение расписания:подсеть в расширенной сети в подмножестве <tex>A</tex> и соответствующие части потока. Фрагмент частичного потока, который проходит через <tex>(K, j)</tex> ограничен
1) Каждое задание имеет своё времени выпуска :<tex>r_i\min \{ j(s_j −- s_{j + 1})T_K, |A|(s_j - s_{j+1})T_K \} = T_K(s_j - s_{j+1}) \min \{ j, |A| \}</tex>.
2) Срок завершения(дедлайн) <tex>d_i</tex>.:Таким образом, мы имеем
Требуется минимизировать опоздание <table align = center><tr><td><tex>L_i \sum\limits_{i \in A} x_{iK} \geqslant T_K \sum\limits_{j = C_i 1}^m(s_j −- d_is_{j+1}) \min \{ j, |A| \} = T_Kh(A)</tex>. <tex>(*)</tex></td></tr></table>
==Алгоритм решения==[[Файл:Figure_5То, что равенство <tex>(*)</tex> справедливо, может рассматриваться как следствие.9.a.png|200px|thumbЕсли <tex>|rightA|Рис. 2.1]]> m</tex>, то
Применим бинарный поиск:<tex>\sum\limits_{j = 1}^m \min \{ j, |A| \}(s_j - s_{j + 1}) = s_1 - s_2 + 2s_2 - 2s_3 + 3s_3 - 3s_4 + . Таким образом сведем задачу к поиску потока сети.. + ms_s - ms_{m+1} =\ </tex>:<tex>S_m = h(A)</tex>.
Пусть <tex> t_1 < t_2 <...< t_r </tex> упорядоченная последовательности всех значений <tex>r_i</tex> и <tex>d_i</tex>.Определим <tex> I_K := [t_{K-1}, t_K], \ T_K = t_K-t_{K-−1} </tex> для <tex> K = 2,..., r </tex>.В противном случае
Расширим сеть:<tex>\sum\limits_{j = 1} \min \{ j, показанную на Рис|A| \}(s_j - s_{j + 1}) = s_1 - s_2 + 2s_2 - 2s_3 + 3s_3 - .. . + (|A| - 1)s_{|A| - 1 следующим образом} -\ </tex>:<tex>(|A| - 1)s_{|A|} + |A|(s_{|A|} - s_{|A| - 1} - ... - s_m + s_m - s_{m + 1}) = S_{|A|} = h(A)</tex>
Cчитаем, что станки индексируются в порядке невозрастания скоростей :<table align = center><tr><td><tex> s_1 \ge s_2 sum\limits_{i \ge . . . in A} x_{iK} \ge s_m leqslant T_Kh(A)</tex>, кроме того <tex>s_{m+1} = 0(**)</tex>.</td></tr></table>
Расширенная подсеть строится путем добавления к вершинам выполняется. Кроме того, для <tex> I_K, J_{i_1}, J_{i_2}i = 1, . . . , J_{i_s} n</tex> вершин у нас <tex>(p_i = \sum\limits_{K, 1), (K, = 2), . . . (K, m) }^r s_{iK}</tex>. При Остается показать, что можно отправить <tex>j = 1,..., m x_{iK}</tex>, есть дуги от <tex>(K, j)J_i</tex> до <tex>I_K</tex> с емкостью <tex> j(s_j - s_{j+i = 1}, . . . , n; K = 2, . . . , r) T_K </tex> и для всех в расширенной сети. Такой поток существует, если <tex>ν = \forall A \subseteq \{ 1,. . . , sn \}</tex> и <tex>j K = 12,. . ., mr</tex> существует дуга из значение <tex>J_\sum\limits_{i \in A} x_{i_νiK}</tex> в ограничено величиной минимального разреза части сети с истоками <tex>J_i(K, Ji \in A)</tex> с емкостью и стоком <tex> (s_j - s_{j+1}) T_K I_K</tex>.Тем не менее, это значение
Для каждого <tex>I_K</tex> у нас есть такие расширения. Кроме тогоT_K\sum\limits_{j = 1}^m \min \{ j, мы сохраняем дуги из <tex>s|A| \}(s_j - s_{j+1})</tex> в <tex>J_i</tex> емкостью <tex>p_i</tex> и дуги из <tex>I_K</tex> в <tex>t</tex> емкостью <tex>S_mT_K</tex> (см. рисунок 1).
{{Теорема|statement=Следующие свойства эквивалентны:Используя <tex>(**)</tex> и правую часть <tex>(*)</tex>, получаем
(Б) В расширенной сети существует поток от s до t со значением <tex>\sum\limits_{i=1}^{n} p_i</tex>что и является искомым неравенством.
==Время работы==
[[Файл:Figure_5.9.b.png|500px|thumb|right|Рис. 2.2 - Расширение сети]]
Из-за максимального потока ===Время работы=== Работа с максимальным потоком в расширенной сети могут быть рассчитаны в занимает <tex>O (m n^3)</tex> шагов, возможность проверки проверка может быть сделано сделана с такой же сложностискоростью. Для решения задачи <tex>Q|\mid pmtn; r_{i}|\mid L_{max}</tex> мы используем бинарный поиск. Получается , а значит, получаем алгоритм со с <tex>\varepsilon</tex>-приближенной сложностью <tex>O (mn^3(\log(n) + \log(1 / \varepsilon) + \log (\max\limits_{i=1}^{n} p_i)) </tex>, потому что как <tex>L_{max}</tex>, ограничен <tex>n \max\limits_{i=1}^{n}p_i</tex>, при <tex>s_1 = 1</tex>.
С другой стороны, решение <tex>Q | pmtn | Lmax</tex> эквивалентно нахождению такого наименьшего <tex>T \ge 0</tex>, такого, что задача с "временными окнами" <tex>[0, d_i + T]</tex> или с "временными окнами" <tex>[−T, d_i]</tex> имеет решение.}}==Примечания==Таким образом, задачи <tex>Q | pmtn; ri | Cmax</tex> и <tex>Q | pmtn | Lmax<references/tex> симметричны.
rollbackEdits.php mass rollback
<div styletex dpi ="background-color200">Q \mid pmtn, r_i \mid L_{max}</tex>{{Задача|definition=Рассмотрим задачу на нахождение расписания: # У нас есть несколько станков, работающих параллельно. У станков могут быть разные скорости выполнения работ.# Есть несколько заданий, каждое имеет своё время появления <tex>r_i</tex> и время окончания <tex>d_i</tex>.#ABCDEF; fontРабота может быть прервана в любой момент и продолжена позже на любой машине.Требуется минимизировать максимальное опоздание <tex>L_{max} = \max\limits_i \{C_i -sized_i\}</tex>. }} ==Алгоритм=====Алгоритм решения===<table><tr><td>[[Файл:Figure_5.2.png|500px|thumb|Рис. 1. Исходная сеть]]</td><td>[[Файл: 16px; fontFigure_5.9.b.png|500px|thumb|Рис. 2. Расширение сети]]</td></tr></table> Как в [[PpmtnriLmax|задаче]] <tex>P \mid pmtn, r_i \mid L_{max}</tex> применим метод [[Вещественный_двоичный_поиск|двоичного поиска]] и сведем задачу к <tex> Q \mid pmtn, r_i, d_i \mid -weight</tex>. Для существования расписания с <tex> L_{max} \leqslant L^* </tex> требуется, чтобы у работы с номером <tex> i </tex> выполнялось <tex> C_i - d_i \leqslant L^* </tex>, что эквивалентно <tex> C_i \leqslant d_i + L^* </tex>. Опишем алгоритм решения <tex> Q \mid pmtn, r_i, d_i \mid - </tex> при помощи сведения к задаче поиска [[Определение_сети,_потока|максимального потока]]. Пусть <tex> t_1 \leqslant t_2 \leqslant ... \leqslant t_r </tex> {{---}} упорядоченная последовательность всех значений <tex>r_i</tex> и <tex>d_i + L^*</tex>.Определим интервалы на исходной сети (Рис. 1) <tex> I_K : bold; color: #000000; text= [t_{K-1}, t_K], \ T_K = t_K-align: center; padding: 4px; bordert_{K−1} </tex> для <tex> K = 2,..., r </tex>. Cчитаем, что станки занумерованы в порядке невозрастания скоростей <tex> s_1 \geqslant s_2 \geqslant . . . \geqslant s_m </tex> (также считаем <tex>s_{m+1} = 0</tex>). Искомая сеть строится с помощью расширения сети из задачи <tex>P \mid pmtn, r_i \mid L_{max}</tex>. Обозначим через <tex> J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex> набор предшественников узла <tex>I_K</tex>, тогда замененная нами подсеть определяется как <tex> I_K, J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex>. Расширение сети показано на Рис. 2. Расширенная подсеть строится путем добавления к вершинам <tex> I_K, J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex> вершин <tex>(K, 1), (K, 2), . . . (K, m) </tex>. При <tex>j = 1,..., m </tex>, есть дуги от <tex>(K, j)</tex> до <tex>I_K</tex> с пропускной способностью <tex> j(s_j -style: solid; borders_{j+1}) T_K </tex> и для всех <tex>\nu = 1,. . . , s</tex> и <tex>j = 1,. . ., m</tex> существует дуга из <tex>J_{i_\nu}</tex> в <tex>(K, J)</tex> с пропускной способностью <tex> (s_j -width: 1px;"s_{j+1}) T_K </tex>. Это выполняется для каждой вершины <tex>I_K</tex>. Кроме того, мы сохраняем дуги из <tex>s</tex> в <tex>J_i</tex> пропускной способностью <tex>p_i</tex> и дуги из <tex>I_K</tex>Эта статья находится в разработке!<tex>t</divtex>пропускной способностью <tex>S_mT_K</tex> (Рис. 1). ===Корректность и оптимальность алгоритма==={{Теорема|statement=Следующие утверждения эквивалентны::<tex>(a)<includeonly/tex>[[КатегорияСуществует допустимое расписание.: <tex>(b)</tex> В разработке]]расширенной сети существует поток от <tex>s</tex> до <tex>t</tex> со значением <tex>\sum\limits_{i=1}^n p_i</tex>. |proof=<tex>(b) \Rightarrow (a)</tex> :Рассмотрим в расширенной сети поток величиной <tex>\sum\limits_{i = 1}^n {p_i}</tex>. Обозначим через <tex>x_{iK}</tex> общий поток, который идет от <tex>J_i</tex> до <tex>I_K</tex>. Заметим, что <tex>\sum\limits_{i = 1}^n \sum\limits_{K = 2}^r x_{iK} = \sum\limits_{i = 1}^n p_i</tex>. Достаточно показать, что для каждого подмножества <tex>A \subseteq \{ 1, . . . , n \}</tex> выполняется :<tex>\sum\limits_{i \in A} x_{iK} \leqslant T_Kh(A)</tex> ,где <tex>h(A) = \begin{cases} S_{|A|}, & \text{if }|A| \leqslant m \\ S_m, & \text{otherwise}\end{cases} </includeonlytex>.
<tex>I_K(a) \Rightarrow (b)</tex> - произвольный интервал-узел<br>:Предположим, что допустимое расписание существует. Обозначим через Для <tex> J_{i_1}i = 1, ... , J_{i_2}n </tex> и <tex>K = 2, . . . , J_r</tex> пусть <tex>x_{i_siK} </tex> набор предшественников узла является "объемом работ", который будет выполняться в интервале <tex>I_K</tex>в соответствии с нашим возможным расписанием. Тогда для всех <tex>K = 2, тогда замененная нами подсеть(Рис. 2.1) определяется как ., r</tex> и произвольных наборов <tex> I_K, J_A \subseteq \{i_1}, J_{i_2}1, . . . , J_{i_sn \} </tex>. Расширение сети показано на Рис 2.2., неравенство
<tex>\sum\limits_{i \in A} x_{iK} \leqslant T_K h(АA) Существует допустимое расписание.= T_K \sum\limits_{j = 1}^m \min \{ j, |A| \}(s_j - s_{j+1})</tex>
}}
Задача <tex>Q | \mid pmtn; ri | Cmaxr_i \mid C_{max}</tex> представляет собой частный случай <tex>Q | \mid pmtn; ri | Lmaxr_i \mid L_{max}</tex>, и может быть решена более эффективно. Labetoulle, Lawler, Lenstra, и Rinnooy Kan разработали алгоритм работающий за <texref> O(n log(n) + mn) </tex> специально для этого случаяОписано в Peter Brucker.«Scheduling Algorithms» {{Утверждение|statement= Задача <tex>Q | pmtn | Lmax</tex> может быть решена за <tex> O(n log(n) + mn) </tex> шагов.|proof= Решение <tex>Q | pmtn; ri | Cmax</tex> эквивалентно нахождению наименьшего <tex>T \ge 0</tex>, такого, что задача с "временными окнами" <tex>[r_i, T] (i = 1---}} «Springer», 2006 г. {{---}} 133 стр. . , n)</texref> имеет решение.
==Источникиинформации==* Peter Brucker. «Scheduling Algorithms» {{---}} «Springer», 2006 г. {{---}} 379 129 {{---}} 133 стр. {{---}} ISBN 978-3-540-69515-8
[[Категория: Теория расписаний]]