Алгоритм вычисления символа Якоби — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
м (rollbackEdits.php mass rollback)
 
(не показана 1 промежуточная версия 1 участника)
(нет различий)

Текущая версия на 19:25, 4 сентября 2022

Эта статья находится в разработке!

Для вычисления символа Якоби [math]\left(\cfrac{a}{n}\right)[/math] эффективно использовать следующий алгоритм:

  1. Если [math]a\lt 0[/math], то применяя утверждения 2 и 5, получаем [math]\left(\cfrac{a}{n}\right)=\left(\cfrac{-a}{n}\right)\times(-1)^{\frac{n-1}{2}}[/math]. Вычисляем [math]\left(\cfrac{-a}{n}\right)[/math] и пропускаем последующие пункты.
  2. Если [math]a[/math] четно, то применяя утверждения 2 и 6, получаем [math]\left(\cfrac{a}{n}\right)=\left(\cfrac{a/2}{n}\right)\times(-1)^{\frac{n^2-1}{8}}[/math]. Вычисляем [math]\left(\cfrac{a/2}{n}\right)[/math] и пропускаем последующие пункты.
  3. Если [math]a=1[/math], то применяя утверждение 5 [math]\left(\cfrac{a}{n}\right)=1[/math], вычисление закончилось.
  4. Если [math]a\lt n[/math], то применяя теорему 2 получаем [math]\left(\cfrac{a}{n}\right)=(-1)^{\frac{a-1}{2}\frac{n-1}{2}}\left(\cfrac{n}{a}\right)[/math]. Вычисляем [math]\left(\cfrac{n}{a}\right)[/math] и пропускаем последующие пункты.
  5. [math]\left(\cfrac{a}{n}\right)=\left(\cfrac{a\mod n}{n}\right)[/math]. Вычисляем [math]\left(\cfrac{a\mod n}{n}\right)[/math]. Пирменяем алгоритм для каждого символа Якоби, который необходимо вычислить.