Транзитивное замыкание — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показаны 23 промежуточные версии 9 участников) | |||
Строка 1: | Строка 1: | ||
− | {{ | + | {{Определение |
− | + | |definition= | |
− | '''Транзитивным замыканием''' < | + | '''Транзитивным замыканием''' (англ. ''transitive closure'') <tex>\mathrm{TrCl}(R)</tex> отношения <tex>R</tex> на множестве <tex>X</tex> называется пересечение всех транзитивных отношений, содержащих <tex>R</tex> как подмножество (иначе, минимальное [[транзитивное отношение]], содержащее <tex>R</tex> как подмножество).}} |
+ | Например, если <tex>V</tex> {{---}} множество городов, и на них задано отношение <tex>R</tex>, означающее, что если <tex>x R y</tex>, то "существует автобусный маршрут из <tex> x</tex> в <tex> y</tex>", то транзитивным замыканием этого отношения будет отношение "существует возможность добраться из <tex> x</tex> в <tex> y</tex>, передвигаясь на автобусах". | ||
== Существование и описание == | == Существование и описание == | ||
− | Транзитивное замыкание существует для любого отношения. Для этого отметим, что пересечение любого множества транзитивных отношений транзитивно. Более того, обязательно существует транзитивное отношение, содержащее < | + | Транзитивное замыкание существует для любого отношения. Для этого отметим, что пересечение любого множества транзитивных отношений транзитивно. Более того, обязательно существует транзитивное отношение, содержащее <tex>R</tex> как подмножество (например, <tex>X \times X</tex>). |
− | Докажем, что < | + | {{Теорема |
− | :< | + | |statement= |
+ | Докажем, что <tex>R^+</tex> является транзитивным замыканием отношения <tex>R</tex>. | ||
+ | :<tex>R^+ = \bigcup\limits_{i \in \mathbb{N}} R^i</tex> | ||
− | * < | + | |proof= |
− | * < | + | * <tex>R \subset R^+</tex> по определению <tex>R^+</tex> |
− | * < | + | * <tex>R^+</tex> транзитивно. Пусть <tex>a R^+ b</tex> и <tex>b R^+ c</tex>. Это значит, что существуют <tex> i, j </tex> такие, что <tex>a R^i b</tex> и <tex>b R^j c</tex>. Но тогда <tex>a R^{i+j} c</tex>, и, так как <tex>R^{i+j} \subset R^+</tex>, то <tex>a R^+ c</tex> |
+ | * <tex>R^+</tex> {{---}} минимальное отношение, удовлетворяющее представленным требованиям. Пусть <tex>T</tex> {{---}} транзитивное отношение, содержащее <tex>R</tex> в качестве подмножества. Покажем, что <tex>R^+ \subset T</tex>. <tex>R \subset T \Leftrightarrow R^i \subset T</tex> для любого натурального <tex>i</tex>. Докажем это по индукции. <tex>R^1 = R \subset R^+</tex>, как было показано выше. Пусть верно для любого <tex>i \leqslant k</tex>. Пусть <tex>a R^{k+1} c</tex>. Но тогда существует <tex>b: aR^kb</tex> и <tex>bRc</tex>, но <tex>R \subset T, R^k \subset T</tex>, следовательно <tex>aTb, bTc</tex>. Из транзитивности <tex>T</tex> следует, что <tex>aTc</tex>, следовательно <tex>R^{k+1} \subset T</tex>. | ||
+ | }} | ||
== Построение транзитивного замыкания == | == Построение транзитивного замыкания == | ||
− | Представленное доказательство указывает на способ построения транзитивного замыкания, а также позволяет определить транзитивное замыкание отношения < | + | Представленное доказательство указывает на способ построения транзитивного замыкания, а также позволяет определить транзитивное замыкание отношения <tex>R</tex> как отношение <tex>T</tex> такое, что <tex>aTb</tex> тогда и только тогда, когда существуют <tex>x_1, x_2, \ldots, x_n</tex> такие, что <tex>aRx_1, x_1Rx_2, x_2Rx_3, \ldots, x_{n-1}Rx_n, x_nRb</tex>, то есть существует путь из вершины <tex>a</tex> в вершину <tex>b</tex> по рёбрам графа отношения. |
− | + | {{Теорема | |
− | :< | + | |statement= |
+ | Если <tex>R</tex> {{---}} отношение на конечном множестве размера n, то транзитивным замыканием такого отношения будет отношение | ||
+ | :<tex>T = \bigcup\limits_{i = 1}^{n} R^i</tex>. | ||
− | Действительно, если по рёбрам графа есть путь длины < | + | |proof= |
+ | Действительно, если по рёбрам графа есть путь длины <tex>l > n</tex>, то он проходит по всем вершинам графа, а, значит, в этом пути есть цикл и его можно отбросить, тем самым уменьшив длину пути. Длину пути можно уменьшать до того, пока она не будет не превосходить количество вершин графа (элементов множества), а значит, все пути длины более, чем <tex>n</tex> можно "выкинуть" из объединения. | ||
+ | }} | ||
− | Для построения транзитивного отношения | + | Для построения транзитивного замыкания отношения, заданного матрицей смежности, используется [[алгоритм Флойда — Уоршелла]]. |
== Свойства транзитивного замыкания == | == Свойства транзитивного замыкания == | ||
* Транзитивное замыкание рефлексивного отношения рефлексивно, так как транзитивное отношение содержит исходное отношение | * Транзитивное замыкание рефлексивного отношения рефлексивно, так как транзитивное отношение содержит исходное отношение | ||
− | * Транзитивное замыкание симметричного отношения симметрично. Действительно, пусть < | + | * Транзитивное замыкание симметричного отношения симметрично. Действительно, пусть <tex>aTb</tex>, значит существуют <tex>x_1, x_2, \ldots, x_n</tex> такие, что <tex>aRx_1, x_1Rx_2, \ldots, x_nRb</tex>. Но из симметричности отношения <tex>R</tex> следует <tex>bRx_n, x_nRx_{n-1}, \ldots, x_1Ra</tex>, а, следовательно, <tex>bTa</tex> |
− | * Транзитивное замыкание не сохраняет антисимметричность, например, для отношения < | + | * Транзитивное замыкание не сохраняет антисимметричность, например, для отношения <tex>\{(a, b), (b, c), (c, a)\}</tex> на множестве <tex>\{a, b, c\}</tex> |
− | * Транзитивное замыкание транзитивного отношения - оно само | + | * Транзитивное замыкание транзитивного отношения {{---}} оно само |
== Рефлексивно-транзитивное замыкание == | == Рефлексивно-транзитивное замыкание == | ||
− | Отношение < | + | Отношение <tex>R^* = R^+ \cup R^0</tex>, где |
− | :< | + | :<tex>R^0 = \{(e, e) | e \in X\}</tex> |
− | иногда называют рефлексивно-транзитивным замыканием, хотя часто под "транзитивным замыканием" подразумевается именно < | + | иногда называют рефлексивно-транзитивным замыканием, хотя часто под "транзитивным замыканием" подразумевается именно <tex>R^*</tex>. Обычно различия между этими отношениями не являются значительными. |
+ | |||
+ | == См. также == | ||
+ | * [[Транзитивное_отношение|Транзитивное отношение]] | ||
+ | * [[Алгоритм_Флойда_—_Уоршалла|Алгоритм Флойда-Уоршалла (построение транзитивного замыкания отношения)]] | ||
+ | * [[Транзитивный_остов|Транзитивный остов]] | ||
+ | |||
+ | == Источники информации == | ||
+ | *[http://en.wikipedia.org/wiki/Transitive_closure Wikipedia | Transitive closure (англ.)] | ||
+ | |||
+ | [[Категория:Дискретная математика и алгоритмы]] | ||
+ | [[Категория: Отношения ]] |
Текущая версия на 19:25, 4 сентября 2022
Определение: |
Транзитивным замыканием (англ. transitive closure) транзитивное отношение, содержащее как подмножество). | отношения на множестве называется пересечение всех транзитивных отношений, содержащих как подмножество (иначе, минимальное
Например, если
— множество городов, и на них задано отношение , означающее, что если , то "существует автобусный маршрут из в ", то транзитивным замыканием этого отношения будет отношение "существует возможность добраться из в , передвигаясь на автобусах".Содержание
Существование и описание
Транзитивное замыкание существует для любого отношения. Для этого отметим, что пересечение любого множества транзитивных отношений транзитивно. Более того, обязательно существует транзитивное отношение, содержащее
как подмножество (например, ).Теорема: |
Докажем, что является транзитивным замыканием отношения .
|
Доказательство: |
|
Построение транзитивного замыкания
Представленное доказательство указывает на способ построения транзитивного замыкания, а также позволяет определить транзитивное замыкание отношения
как отношение такое, что тогда и только тогда, когда существуют такие, что , то есть существует путь из вершины в вершину по рёбрам графа отношения.Теорема: |
Если — отношение на конечном множестве размера n, то транзитивным замыканием такого отношения будет отношение
|
Доказательство: |
Действительно, если по рёбрам графа есть путь длины | , то он проходит по всем вершинам графа, а, значит, в этом пути есть цикл и его можно отбросить, тем самым уменьшив длину пути. Длину пути можно уменьшать до того, пока она не будет не превосходить количество вершин графа (элементов множества), а значит, все пути длины более, чем можно "выкинуть" из объединения.
Для построения транзитивного замыкания отношения, заданного матрицей смежности, используется алгоритм Флойда — Уоршелла.
Свойства транзитивного замыкания
- Транзитивное замыкание рефлексивного отношения рефлексивно, так как транзитивное отношение содержит исходное отношение
- Транзитивное замыкание симметричного отношения симметрично. Действительно, пусть , значит существуют такие, что . Но из симметричности отношения следует , а, следовательно,
- Транзитивное замыкание не сохраняет антисимметричность, например, для отношения на множестве
- Транзитивное замыкание транзитивного отношения — оно само
Рефлексивно-транзитивное замыкание
Отношение
, гдеиногда называют рефлексивно-транзитивным замыканием, хотя часто под "транзитивным замыканием" подразумевается именно
. Обычно различия между этими отношениями не являются значительными.См. также
- Транзитивное отношение
- Алгоритм Флойда-Уоршалла (построение транзитивного замыкания отношения)
- Транзитивный остов