Связь матрицы Кирхгофа и матрицы инцидентности — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
Строка 1: Строка 1:
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 
|+
 
|-align="center"
 
|'''НЕТ ВОЙНЕ'''
 
|-style="font-size: 16px;"
 
|
 
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 
 
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 
 
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 
 
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 
 
''Антивоенный комитет России''
 
|-style="font-size: 16px;"
 
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 
|-style="font-size: 16px;"
 
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 
|}
 
 
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=

Текущая версия на 19:25, 4 сентября 2022

Определение:
Пусть [math]G[/math] — произвольный граф. Превратим каждое его ребро в дугу, придав ребру одно из двух возможных направлений. Полученный орграф на том же самом множестве вершин будем называть ориентацией графа [math]G[/math].


Лемма:
Пусть [math]K[/math] матрица Кирхгофа графа [math]G[/math], [math]I[/math] матрица инцидентности [math]G[/math] с некоторой ориентацией. Тогда [math]K = I \cdot I^T.[/math]
Доказательство:
[math]\triangleright[/math]
При умножении [math]i[/math]-й строки исходной матрицы [math]I[/math] на [math]j[/math]-й столбец транспонированной матрицы [math]I^T [/math] перемножаются [math]i[/math]-я и [math]j[/math]-я строки исходной матрицы. При умножении [math]i[/math]-й строки на саму себя на диагонали полученной матрицы получится сумма квадратов элементов [math]i[/math]-й строки, которая равна, очевидно, [math]\deg(v_i)[/math]. Пусть теперь [math]i \ne j[/math]. Если [math] (v_i, v_j) \in E [/math], то существует ровно одно ребро, соединяющее [math] v_i [/math] и [math] v_j [/math], следовательно результат перемножения [math]i[/math]-й и [math]j[/math]-й строк равен [math]-1[/math], в противном случае он равен [math]0[/math] в силу отсутствия ребра, инцидентного обеим вершинам. Определенная данными условиями матрица и является матрицей Кирхгофа.
[math]\triangleleft[/math]
Граф Матрица Кирхгофа Матрица инцидентности
Link kirhgof matrix 1.png [math]\left(\begin{array}{rrrrrr} 2 & -1 & 0 & 0 & -1 & 0\\ -1 & 3 & -1 & 0 & -1 & 0\\ 0 & -1 & 2 & -1 & 0 & 0\\ 0 & 0 & -1 & 3 & -1 & -1\\ -1 & -1 & 0 & -1 & 3 & 0\\ 0 & 0 & 0 & -1 & 0 & 1\\ \end{array}\right)[/math] [math]\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0\\ 1 & 1 & 0 & 0 & 0 & 1 & 0\\ 0 & 1 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 1 & 0 & 0 & 1\\ 0 & 0 & 0 & 1 & 1 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 1\\ \end{pmatrix}[/math]

См. также

Источники информации

  • Асанов М., Баранский В., Расин В. — Дискретная математика: Графы, матроиды, алгоритмы — Ижевск: ННЦ "Регулярная и хаотическая динамика", 2001, 288 стр.