О почленном интегрировании ряда Фурье — различия между версиями
Komarov (обсуждение | вклад) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 3 промежуточные версии 2 участников) | |||
Строка 52: | Строка 52: | ||
<tex> \frac1{\pi n} (F(x) \sin x) \bigl |^\pi_{-\pi} - \int\limits_{-\pi}^\pi \sin nx dF(x) ) = </tex> | <tex> \frac1{\pi n} (F(x) \sin x) \bigl |^\pi_{-\pi} - \int\limits_{-\pi}^\pi \sin nx dF(x) ) = </tex> | ||
<tex> \frac1{\pi n} (0 - \int\limits_{-\pi}^\pi \sin x dF(x)) = -\frac1{\pi n} \int\limits_{-\pi}^\pi \sin nx dF(x) =</tex> | <tex> \frac1{\pi n} (0 - \int\limits_{-\pi}^\pi \sin x dF(x)) = -\frac1{\pi n} \int\limits_{-\pi}^\pi \sin nx dF(x) =</tex> | ||
− | <tex> -\frac1{\pi n} \int\limits_{-\pi}^\pi f(x)\sin nx dx = -\frac{b_n \pi}{\pi n} = -\frac{b_n}{n} </tex> | + | <tex> -\frac1{\pi n} \int\limits_{-\pi}^\pi f(x)\sin nx dx = -\frac{b_n(f) \pi}{\pi n} = -\frac{b_n(f)}{n} </tex> |
Значит, <tex>a_n(F) = \frac{-b_n(f)}{n}</tex>. Аналогично, <tex>b_n(F) = \frac{a_n(f)}{n}</tex>. В силу сказанного выше, | Значит, <tex>a_n(F) = \frac{-b_n(f)}{n}</tex>. Аналогично, <tex>b_n(F) = \frac{a_n(f)}{n}</tex>. В силу сказанного выше, | ||
Строка 69: | Строка 69: | ||
При <tex>x = 0</tex> ряд сходится. При <tex>x \ne 0</tex>, <tex>\left|\sum\limits_{n=2}^\infty \sin nx \right| \le \frac{M(x)}{\sin x/2}</tex>, то есть, ограничен. | При <tex>x = 0</tex> ряд сходится. При <tex>x \ne 0</tex>, <tex>\left|\sum\limits_{n=2}^\infty \sin nx \right| \le \frac{M(x)}{\sin x/2}</tex>, то есть, ограничен. | ||
− | По признаку Абеля-Дирихле, ряд сходится. Мы имеем ряд, сходящийся в каждой точке | + | По признаку Абеля-Дирихле, ряд сходится. Мы имеем ряд, сходящийся в каждой точке, но не может сходиться равномерно на Q, так как, иначе, он был бы рядом Фурье. Пусть он сходится равномерно на <tex>Q</tex>. Тогда он сходится к непрерывной функции. Функция, непрерывная и <tex>2\pi</tex>-периодическая, следовательно, лежит в <tex>L_1</tex>. Значит, это {{---}} ряд Фурье этой функции (по определению). Но это не ряд Фурье. Противоречие. |
Предположим, что это ряд Фурье. Тогда <tex>b_n(f) = \frac1{\ln n}</tex> и ряд <tex>\sum \frac1{n\ln n}</tex> должен был бы сходиться. Но по интегральному признаку Коши: | Предположим, что это ряд Фурье. Тогда <tex>b_n(f) = \frac1{\ln n}</tex> и ряд <tex>\sum \frac1{n\ln n}</tex> должен был бы сходиться. Но по интегральному признаку Коши: |
Текущая версия на 19:25, 4 сентября 2022
Здесь будем рассматривать
,Пусть
.Докажем, что
:Утверждение: | ||||||||||
Нужно доказать -периодичность и ограниченность её вариации.
| ||||||||||
Итак, теореме Жордана, в каждой точке ряд Фурье этой функции сходится,
. Значит,поВ силу абсолютной непрерывности интеграла Лебега, легко понять, что
— непрерывна и , а также,Теперь вычислим коэффициенты Фурье
. считать пока не будем. Также предположим (докажем это позже), что для почти всех дифференцируема по верхнему пределу интегрирования, и значение производной равно .
Значит,
. Аналогично, . В силу сказанного выше,
Подставим
и убедимся, чтоПолучился неожиданный факт. Ряд Фурье может расходиться почти всюду, но
всегда сходится.Это позволяет приводить примеры сходящихся тригонометрических рядов, которые не являются рядами Фурье.
Рассмотрим ряд
. Очевидно, .При
ряд сходится. При , , то есть, ограничен.По признаку Абеля-Дирихле, ряд сходится. Мы имеем ряд, сходящийся в каждой точке, но не может сходиться равномерно на Q, так как, иначе, он был бы рядом Фурье. Пусть он сходится равномерно на
. Тогда он сходится к непрерывной функции. Функция, непрерывная и -периодическая, следовательно, лежит в . Значит, это — ряд Фурье этой функции (по определению). Но это не ряд Фурье. Противоречие.Предположим, что это ряд Фурье. Тогда
и ряд должен был бы сходиться. Но по интегральному признаку Коши: .Значит, это не ряд Фурье.
Вернёмся ещё раз к формуле
. Рассмотрим , при , и .
Значит, если составить ряд из интегралов
.
Получаем,
.Ряд Фурье всегда можно интегрировать, несмотря на то, что сам ряд может расходиться в каждой точке. Но ряд из интегралов обязательно сойдётся.