1632
правки
Изменения
м
Операция просеивания значительно упрощена благодаря использованию чисел Просеивание в куче Леонардосильно упрощено, так как каждая куча либо будет одноэлементной, иметь либо будет иметь двух потомков, либо ноль. Нет нужды беспокоиться об отсутствии одной из куч-потомков.
rollbackEdits.php mass rollback
'''Плавная сортировка''' (англ. Smooth sort) {{---}} алгоритм сортировки, модификация [[Сортировка кучей|сортировки кучей]], разработанный Э. Дейкстрой. Как и пирамидальная сортировка, в худшем случае работает за время <tex> \Theta(N\log{N}) </tex>. Преимущество плавной сортировки в том, что её сложность время работы приближается к <tex dpi = 120> O(N) </tex>, если входные данные частично отсортированы, в то время как у сортировки кучей сложность всегда одна, независимо время работы не зависит от состояния входных данных.
==Основная идея==
{{Утверждение
|statement= Любое натуральное число можно представимо в виде суммы из <tex dpi = 120> O(\log{N}) </tex> различных чисел Леонардо.
}}
|definition =
'''''K-ая куча Леонардо''''' — это двоичное дерево с количеством вершин <tex dpi = 120> L(k) </tex>, удовлетворяющее следующим условиям:
* число, записанное в корне , не меньше чисел в поддеревьях,
* левым поддеревом является <tex dpi = 120> (k-1) </tex>-я куча Леонардо,
* правым — <tex dpi = 120> (k-2) </tex>-я куча Леонардо.
}}
Можно заметить, что куча Леонардо очень похожа на [[Биномиальная куча|биномиальную]]. Куча Леонардо используется из-за своих свойств.
[[Файл:leonardo-heap.png|600px|thumb|right|Пример последовательности куч (список хранит номера чисел Леонардо, соответствующих размерам куч)]]
Будем поддерживать следующий инвариант:
* сортируемый массив делится на группу подмассивов,
* каждый подмассив представляет собой структуру данных {{---}} куча,
* каждая куча имеет размер равный одному из чисел Леонардо,
* размеры куч строго убывают слева направо,
* значения ключей в корнях деревьев идут в порядке возрастания слева направо,
* в самих кучах значение в детях меньше либо равно значению в родителе.
В дальнейшем эту группу подмассивов будем называть последовательность последовательностью куч.
===Алгоритм:===
'''Шаг 1:''' Превращение массива в последовательность куч.
'''Шаг 2:''' Пока последовательность куч не пустая , достаем максимальный элемент (это всегда корень самой правой кучи) и восстанавливаем порядок куч, который мог измениться.
==Операции над последовательностью куч==
При конструировании последовательности куч будем последовательно выполнять вставку по очереди вставлять в конец новых элементовновые элементы, а при операции получении отсортированного массива будем {{---}} удалять максимальный элемент из последовательности. Следовательно, нам необходимы две операции: увеличение последовательности куч путём добавления элемента справа (будем считать, что последовательность начинается кучами самого большого в начале последовательности располагаются кучи максимального размера) и уменьшение путём удаления крайнего правого элемента (корня последней кучи), с сохранением состояния кучи и последовательности.
Чтобы быстро обращаться к кучам, будем хранить список их длин. Зная индекс корня некоторой кучи и её длину, можно найти корень соседней индекс корня кучи слеваот неё. Чтобы искать индексы детей вершины, надо воспользоваться свойством кучи Леонардо, что левым поддеревом является <tex dpi = 120> (n - 1) </tex>-ая, а правым является <tex dpi = 120> (n - 2) </tex>-ая куча Леонардо. Для хранения списка длин куч придется выделить <tex dpi = 120> O(\log{N}) </tex> дополнительной памяти.
===Вставка элемента===
* Если две последние кучи имеют размеры <tex dpi = 120> L(x + 1) </tex> и <tex dpi = 120> L(x) </tex> (двух последовательных чисел Леонардо), новый элемент становится корнем кучи большего размера, равного <tex dpi = 120> L(x+2) </tex>. Для неё свойство кучи необязательно.
* Если размеры двух последних куч не равны двум последовательным числам Леонардо, новый элемент образует новую кучу размером <tex dpi = 120> 1 </tex>. Этот размер полагается равным <tex dpi = 120> L(1) </tex>, кроме случая, когда крайняя правая куча уже имеет размер <tex dpi = 120> L(1) </tex>, тогда размер новой одноэлементной кучи полагают равным <tex dpi = 120> L(0) </tex>.
После этого должно быть восстановлено выполнение свойств необходимо восстановить свойства кучи и последовательности куч, что, как правило, достигается при помощи разновидности [[Сортировка вставками|сортировки вставками]] (см. ниже псевдокод):
# Крайняя правая куча (сформированная последней) считается «текущей» кучей.
# Пока слева от неё есть куча, и значение её корня больше значения текущего корня и обоих корней куч-потомков:
#* Пока размер текущей кучи больше <tex dpi = 120> 1 </tex>, и значение корня любой из куч-потомков больше значения корня текущей кучи:
#** Меняются местами наибольший по значению корень кучи-потомка и текущий корень. Куча-потомок становится текущей кучей.
Так как в последовательности <tex dpi = 120> O(\log{N}) </tex> куч, то модификация сортировки вставками будет работать за <tex dpi = 120> O(\log{N}) </tex>. Просеивание тоже выполняется за <tex dpi = 120> O(\log{N}) </tex>, тогда в итоге операция вставки выполняется за:
===Восстановление свойств последовательности===
Пусть нам надо восстановить инвариант последовательности куч. Будем считать, что функции '''''<tex>\mathrm{prev''''' }</tex> (возвращает индекс корня ближайшей слева кучи), '''''<tex>\mathrm{left''''' }</tex> (возвращает индекс левого сына), '''''<tex>\mathrm{right''''' }</tex> (возвращает индекс правого сына) уже реализованы. В функцию '''''<tex>\mathrm{ensureSequence''''' }</tex> передается индекс корня кучи, с которой начинаем восстановление.
<code>
'''function''' ensureSequence(i: '''int'''):
===Построение последовательности===
Последовательность куч получается последовательной вставкой при вставке элементов массива по очереди в конецэту самую последовательность. Получаем время работы <tex dpi = 120> O(N \log{N}) </tex>.
===Получение отсортированного массива===
Так как <tex dpi = 120> O(N) </tex> выполняется удаление максимального элемента из последовательности, то вся эта операция выполняется за <tex dpi = 120> O(N\log{N}) </tex>. Следовательно, сортировка в худшем случае выполняется за то время работы сортировки составляет <tex dpi = 120> O(N\log{N}) </tex>.
===Лучший случай===
Однако если подать на вход плавной сортировке уже отсортированный массив, асимптотика будет составлять <tex dpi = 120> O(N) </tex>. Дело в том, что:
*Операция добавления элемента последовательности на таком примере будет выполняться за <tex dpi = 120> O(1) </tex>, из-за того, что в конец будет добавляться максимальный элемент и просеивание будет сразу останавливаться.
*Операция получения и удаления максимального элемента будет так же также выполняться за <tex dpi = 120> O(1) </tex>, потому что в силу построения в корнях куч-детей будут новые максимальные элементы и следовательно восстановление свойства последовательности закончится на просмотре корня соседней кучи.
В итоге на таком примере получается асимптотика <tex dpi = 120> O(N) </tex>.
===Недостатки===
* не является устойчивой,
* требует <tex dpi = 120> O(\log{N}) </tex> дополнительной памяти для хранения длин куч в последовательности. Однако с помощью некоторых модификации модификаций расходы на дополнительную память можно получить сократить до <tex dpi 120> O(1) </tex> дополнительной памяти.
===Связь с быстрой сортировкой===
На практике, когда реализуют алгоритм быстрой сортировки, пытаются улучшить асимптотику в худшем случае. Для этого заводится некоторый лимит глубины рекурсии, при превышении которого запускают другую сортировку. Так реализована стандартная сортировка в стандартной библиотеке языка С++. Часто при превышении порога глубины рекурсии используют сортировку кучей. Замена неё на плавную сортировку могла бы улучшить время работы на некоторых тестах, так как после нескольких итераций быстрой сортировки массив окажется почти отсортированным, а на таких массивах время работы плавной сортировки приближается к линейному. Хотя итоговой линейной асимптотики достичь всё равно не получится по [[Теорема о нижней оценке для сортировки сравнениями | теореме о нижней оценке]].
==См. также==
* [[Быстрая сортировка|Быстрая сортировка]]
==ПримечаниеПримечания==
<references />