Алгоритм Голдберга-Тарьяна — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «'''Алгоритм Голдберга-Тарьяна''' (англ ''Goldberg-Tarjan'') - алгоритм, решающий задачу нахождения м...»)
 
м (rollbackEdits.php mass rollback)
 
(не показано 65 промежуточных версий 5 участников)
Строка 1: Строка 1:
'''Алгоритм Голдберга-Тарьяна''' (англ ''Goldberg-Tarjan'') - алгоритм, решающий задачу нахождения максимального потока в транспортной сети за <tex>O(VE \log(VE))</tex>.
 
  
==Идея==
+
'''Алгоритм Голдберга-Тарьяна''' (англ. ''Goldberg-Tarjan'') {{---}} алгоритм, решающий задачу нахождения максимального потока в транспортной сети за <tex>O(VE \log(V))</tex>. Можно считать модификацией алгоритма Диница.
Рассмотрим [[Схема алгоритма Диница|Алгоритм Диница]]. Его схема такова:
+
==Алгоритм==
# При помощи [[Обход в глубину, цвета вершин|обхода в глубину]] находим путь.
+
===Идея===
# Вдоль него увеличиваем потом на минимальную пропускную способность  
+
Вспомним [[Схема алгоритма Диница|алгоритм Диница]]. Пусть есть сеть <tex>G^0_f </tex>  {{---}} некоторый ориентированный ациклический граф, <tex>S</tex>, <tex>T</tex> {{---}} исток и сток соответственно. Схема алгоритма Диница:
 +
# При помощи [[Обход в глубину, цвета вершин|обхода в глубину]] находим путь из <tex>S</tex> в <tex>T</tex>.
 +
# Находим ребро с минимальной пропускной способностью
 +
# Вдоль пути увеличиваем поток на минимальную пропускную способность
 +
 
 +
Попытаемся ускорить процесс поиска пути из <tex>S</tex> в <tex>T</tex>. Для этого, для каждой вершины зафиксируем какое-либо, не более, чем одно, исходящее из нее ребро. Граф ацикличен, значит зафиксированные ребра будут образовывать лес корневых деревьев. Корнем каждого дерева будет вершина, у которой нет зафиксированного ребра.
 +
В каждой вершине будем дополнительно хранить остаточную пропускную способность исходящего зафиксированного ребра.
 +
 
 +
[[Файл:Голдберг-Тарьян.граф.png |500px |thumb|center| Желтым выделены зафиксированные ребра. Тогда <tex>T</tex> {{---}} корень дерева]]
 +
 
 +
Пусть каждое дерево поддерживает следующие операции:
 +
# Вычислить минимум на пути от вершины до корня (1).
 +
# Прибавить константу к числам на пути от вершины до корня (2).
 +
# Отрезать поддерево по ребру. Отрезанное поддерево отделяется и существует независимо от исходного дерева (3).
 +
# Подвесить дерево. Пусть есть дерево с корнем <tex>A</tex>, дерево с вершиной <tex>B</tex>. Операция позволяет Создать ребро из <tex>A</tex> в <tex>B</tex> и тем самым подвесить дерево к вершине (4).
  
Рассмотрим сеть <tex>G^0_f </tex> {{---}} некоторый ациклический граф, S, T {{---}} исток и сток соответственно. Попытаемся ускорить поиск пути из S в T.
+
Заметим, что именно эти операции поддерживает [[Link-Cut Tree|Link-Cut tree]] и умеет их выполнять за <tex>O(\log(N))</tex>.
  
* Для каждой вершины зафиксируем какое-либо, не более чем одно, исходящее из нее ребро. Т.к граф ацикличен, то зафиксированные ребра будут образовывать лес корневых деревьев, где в корне находится вершина, у которой зафиксированного ребра нет.
+
===Поиск пути===
* В каждой вершине будем дополнительно хранить остаточную пропускную способность исходящего зафиксированного ребра.
+
Научимся находить путь из <tex>S</tex> в <tex>T</tex> в описанной выше сети при помощи леса корневых деревьев. Будем отдельно хранить дерево с потоками и дерево с пропускными способностями.
  
==Linking Cutting trees==
+
* Начало.
* Пусть каждое дерево поддерживает следующие операции:
+
* '''Шаг 1'''. Пусть <tex>U</tex> {{---}} корень дерева, в котором лежит <tex>S</tex>.
# Вычисление минимума на пути от вершины до корня
+
* '''Шаг 2'''. Если вершина <tex>U</tex> совпала с вершиной <tex>T</tex> переходим к '''шагу 6''', иначе к '''шагу 3'''.
# Прибавить константу к числам на пути от вершины до корня.
+
* '''Шаг 3'''. Выберем следующее ненасыщенное исходящее ребро. Если ребра нет {{---}} переходим к '''шагу 7'''. Ребра рассматриваем также, как и в алгоритме Диница, с глобальным итератором. Т.е начинать просмотр будем с последнего подошедшего ребра. Если ребро не подошло {{---}} больше его не рассматриваем.
* Предположим, что S, T лежат в одном дереве:
+
* '''Шаг 4'''. Пусть просматриваем ненасыщенное ребро, ведущее в некоторую вершину <tex>V</tex>. Подвесим корень <tex>U</tex> через это ребро к вершине <tex>V</tex>, выполнив <tex>(4)</tex> запрос.
# Можно быстро найти пусть из S в T (Пусть по дереву до корня)
+
* '''Шаг 5'''. В <tex>U</tex> записываем число, равное остаточной пропускной способности ребра. Переходим к '''шагу 1'''.
# При помощи (1) запроса можно найти узкое место на этом пути.
+
* '''Шаг 6'''. Возвращаем найденный путь.
# При помощи (2) запроса можно вычесть из всех ребер на этом пути пропускную способность узкого места, прибавить ее к потоку. (Будем отдельно хранить дерево с потоками и дерево с пропускными способностями)
+
* '''Шаг 7'''. Пути из <tex>S</tex> в <tex>T</tex> нет.
 +
* Конец.
  
Но, даже если S и T попали в одно дерево, на следующем шаге запрос минимума, очевидно, выдаст 0. Потому что на предыдущем шаге этот минимум был вычтен и при помощи текущего дерева ничего улучшить уже не удастся.
+
===Улучшение пути===
 +
Путь из <tex>S</tex> в <tex>T</tex> найден, теперь научимся улучшать путь. Нужно обновить значения пропускных способностей и потоков через вершины этого пути. Тогда:
 +
* При помощи <tex>(1)</tex> запроса можно найти узкое место (ребро с минимальной остаточной пропускной способностью) на этом пути и его пропускную способность.
 +
* При помощи <tex>(2)</tex> запроса можно вычесть из всех ребер на этом пути пропускную способность узкого места, а также, прибавить ее к потоку.
  
Дополнительные операции.
+
Пусть после <tex>(2)</tex> запроса появилось нулевое ребро. Запрос минимума от <tex>S</tex> до корня будет возвращать <tex>0</tex>. Поэтому, такие ребра нужно отрезать, выполнив <tex>(4)</tex> запрос по этому ребру. Стоит заметить, что нулевых ребер может получиться несколько, в случае нескольких минимумов.
# Отрезать поддерево по ребру. Отрезанное поддерево отделяется и существует независимо от исходного дерева.
 
# Подвесить дерево. Пусть есть дерево с корнем А, дерево с вершиной В. Операция позволяет Создать ребро из A в B и тем самым подвесить дерево к вершине.
 
==Алгоритм==
 
Предположим, что такое дерево существует и умеет выполнять все операции за <tex>O(\log(N))</tex>
 
  
Хотим найти путь из S в T. Делаем (1) запрос. Получаем корень, минимум до корня, его расположение. Если корень {{---}} T, то делаем как раньше. Иначе: Просматриваем все ненасыщенные исходящие ребра (как и в алгоритме Диница, если просматривали раньше и не подошло, то не рассматриваем больше. Т.е с глобальным итератором, начиная с последнего подошедшего). Пусть просматриваем какое-то ненасыщеюнное ребро, ведущее в некоторую вершину. Подвешиваем наше дерево к этому ребру и в бывший корень записываем число, равное остаточной пропускной способности этого ребра. ( Это легко сделать при помощи выполнения (2) операции к самому корню до подвешивания. Пусть было INF, прибавим Value - INF -> PROFIT).
+
===Итоговый алгоритм===
  
Далее, снова пополняем запрос из S... и ТД, пока не доберемся до T.
+
Объединим вышесказанное в алгоритм Голдберга-Тарьяна.  
 +
Пусть дана сеть. Требуется в этой сети найти поток <tex>f(S, T) </tex> максимальной величины.
  
Добрались до T. Делаем операцию улучшения пути, появилось нулевое ребро. Обрезаем его. Продолжаем спрашивать из S. Нулевых ребер может быть несколько, значит нужно предусмотреть и для обычного шага. Если запрос из S до корня дал 0, то нужно это ребро отрезать.
+
* Начало.
 +
* '''Шаг 1'''. Для каждого ребра <tex>(u, v)</tex> данной сети <tex>G</tex> зададим <tex>f(u, v) = 0</tex>.
 +
* '''Шаг 2'''. Если есть путь из <tex>S</tex> в <tex>T</tex> {{---}} переходим к '''шагу 3'''.
 +
* '''Шаг 3'''. Выполняем <tex>(1)</tex> запрос, узкое место и пропускную способность. Если пропускная способность положительна, переходим  к '''шагу 4''', иначе к '''шагу 5'''.
 +
* '''Шаг 4'''.  ''Улучшение пути''. Обновляем значения потока и пропускной способности при помощи <tex>(2)</tex> запроса.
 +
* '''Шаг 5'''.  ''Удаление нулевых ребер''. Обрезаем нулевые ребра при помощи <tex>(3)</tex> запроса. Переходим к '''шагу 2'''.
 +
* Конец.
  
 
==Время работы==
 
==Время работы==
Из предположения, что есть структура данных.
+
[[Link-Cut Tree|Link-Cut tree]]  выполняет все вышеописанные запросы за <tex>O(\log(N))</tex>, оценим время работы алгоритма.
Просмотров ребра суммарно О(Е), аналогично алгоритму Диница. Переход к следующему, когда смотрим на ребро и оно насыщено, когда ребро разрезаем, когда смотрим на ребро и оно не лежит в сети кратчайших путей.  
+
 
На каждый просмотр тратится не О(1) а О(log), потому что делаем запрос перед тем как посмотреть на следующее ребро. Значит O(E log(V)).
+
Очевидно, что просмотров ребер суммарно <tex>O(E)</tex>, как и в алгоритме Диница. Переход к следующему ребру происходит в следующих случаях:
 +
# Просматриваемое ребро насыщено.
 +
# Дерево разрезается по нулевому ребру.
 +
# Ребро не лежит в сети кратчайших путей.
 +
 
 +
На каждый просмотр тратится не <tex>O(1)</tex> а <tex>O(\log(V))</tex>, потому что перед тем, как посмотреть на следующее ребро делается запрос. Значит время работы этой части {{---}}  <tex>O(E \log(V))</tex>.
 +
 
 +
Следующий шаг в алгоритме Диница {{---}} сумма длин путей. Раньше считалось за <tex>O(V^2)</tex>, так как на каждый путь обход в глубину тратил время, пропорциональное длине этого пути. Сейчас тратится только <tex>O(\log(V))</tex>  на каждый путь. Если путь найден, значит до него дошли, значит это соответствует одному запросу. Поэтому тратим на каждый путь тоже логарифм <tex>O(\log(V))</tex>.
 +
 
 +
Тогда имеем ассимптотику <tex>O(E\log(V) + V \log(V)) = O((V + E) \log(V))</tex>. И, суммарно, если подставить в алгоритм Диница будем иметь ассимптотику <tex>O(VE \log(V)) </tex>.
 +
 
 +
== См. также ==
 +
* [[Алгоритм Форда-Фалкерсона, реализация с помощью поиска в глубину|Алгоритм Форда-Фалкерсона, реализация с помощью поиска в глубину]]
 +
* [[Алоритм Эдмондса-Карпа|Алоритм Эдмондса-Карпа]]
 +
* [[Алгоритм масштабирования потока|Алгоритм масштабирования потока]]
 +
* [[Метод проталкивания предпотока|Метод проталкивания предпотока]]
 +
 
 +
== Источники информации ==
 +
*[https://www.lektorium.tv/lecture/14408 Lektorium {{---}} Лекция А.С. Станкевича]
  
Второй компонент в алг. Диница - сумма длин путей. Была V^2. Почему столько? На каждый путь DFS тратил время, пропорциональное длине этого пути. Но теперь не тратим. Тратим log  на каждый путь. Потому что если мы нашли путь, это соответствует тому, что мы дошли до него, т.е одному запросу. Поэтому тратим на каждый путь тоже логарифм. Значит O(E log(V) + V log(V)).
+
[[Категория: Алгоритмы и структуры данных]]
 +
[[Категория: Задача о максимальном потоке ]]

Текущая версия на 19:26, 4 сентября 2022

Алгоритм Голдберга-Тарьяна (англ. Goldberg-Tarjan) — алгоритм, решающий задачу нахождения максимального потока в транспортной сети за [math]O(VE \log(V))[/math]. Можно считать модификацией алгоритма Диница.

Алгоритм

Идея

Вспомним алгоритм Диница. Пусть есть сеть [math]G^0_f [/math] — некоторый ориентированный ациклический граф, [math]S[/math], [math]T[/math] — исток и сток соответственно. Схема алгоритма Диница:

  1. При помощи обхода в глубину находим путь из [math]S[/math] в [math]T[/math].
  2. Находим ребро с минимальной пропускной способностью
  3. Вдоль пути увеличиваем поток на минимальную пропускную способность

Попытаемся ускорить процесс поиска пути из [math]S[/math] в [math]T[/math]. Для этого, для каждой вершины зафиксируем какое-либо, не более, чем одно, исходящее из нее ребро. Граф ацикличен, значит зафиксированные ребра будут образовывать лес корневых деревьев. Корнем каждого дерева будет вершина, у которой нет зафиксированного ребра. В каждой вершине будем дополнительно хранить остаточную пропускную способность исходящего зафиксированного ребра.

Желтым выделены зафиксированные ребра. Тогда [math]T[/math] — корень дерева

Пусть каждое дерево поддерживает следующие операции:

  1. Вычислить минимум на пути от вершины до корня (1).
  2. Прибавить константу к числам на пути от вершины до корня (2).
  3. Отрезать поддерево по ребру. Отрезанное поддерево отделяется и существует независимо от исходного дерева (3).
  4. Подвесить дерево. Пусть есть дерево с корнем [math]A[/math], дерево с вершиной [math]B[/math]. Операция позволяет Создать ребро из [math]A[/math] в [math]B[/math] и тем самым подвесить дерево к вершине (4).

Заметим, что именно эти операции поддерживает Link-Cut tree и умеет их выполнять за [math]O(\log(N))[/math].

Поиск пути

Научимся находить путь из [math]S[/math] в [math]T[/math] в описанной выше сети при помощи леса корневых деревьев. Будем отдельно хранить дерево с потоками и дерево с пропускными способностями.

  • Начало.
  • Шаг 1. Пусть [math]U[/math] — корень дерева, в котором лежит [math]S[/math].
  • Шаг 2. Если вершина [math]U[/math] совпала с вершиной [math]T[/math] переходим к шагу 6, иначе к шагу 3.
  • Шаг 3. Выберем следующее ненасыщенное исходящее ребро. Если ребра нет — переходим к шагу 7. Ребра рассматриваем также, как и в алгоритме Диница, с глобальным итератором. Т.е начинать просмотр будем с последнего подошедшего ребра. Если ребро не подошло — больше его не рассматриваем.
  • Шаг 4. Пусть просматриваем ненасыщенное ребро, ведущее в некоторую вершину [math]V[/math]. Подвесим корень [math]U[/math] через это ребро к вершине [math]V[/math], выполнив [math](4)[/math] запрос.
  • Шаг 5. В [math]U[/math] записываем число, равное остаточной пропускной способности ребра. Переходим к шагу 1.
  • Шаг 6. Возвращаем найденный путь.
  • Шаг 7. Пути из [math]S[/math] в [math]T[/math] нет.
  • Конец.

Улучшение пути

Путь из [math]S[/math] в [math]T[/math] найден, теперь научимся улучшать путь. Нужно обновить значения пропускных способностей и потоков через вершины этого пути. Тогда:

  • При помощи [math](1)[/math] запроса можно найти узкое место (ребро с минимальной остаточной пропускной способностью) на этом пути и его пропускную способность.
  • При помощи [math](2)[/math] запроса можно вычесть из всех ребер на этом пути пропускную способность узкого места, а также, прибавить ее к потоку.

Пусть после [math](2)[/math] запроса появилось нулевое ребро. Запрос минимума от [math]S[/math] до корня будет возвращать [math]0[/math]. Поэтому, такие ребра нужно отрезать, выполнив [math](4)[/math] запрос по этому ребру. Стоит заметить, что нулевых ребер может получиться несколько, в случае нескольких минимумов.

Итоговый алгоритм

Объединим вышесказанное в алгоритм Голдберга-Тарьяна. Пусть дана сеть. Требуется в этой сети найти поток [math]f(S, T) [/math] максимальной величины.

  • Начало.
  • Шаг 1. Для каждого ребра [math](u, v)[/math] данной сети [math]G[/math] зададим [math]f(u, v) = 0[/math].
  • Шаг 2. Если есть путь из [math]S[/math] в [math]T[/math] — переходим к шагу 3.
  • Шаг 3. Выполняем [math](1)[/math] запрос, узкое место и пропускную способность. Если пропускная способность положительна, переходим к шагу 4, иначе к шагу 5.
  • Шаг 4. Улучшение пути. Обновляем значения потока и пропускной способности при помощи [math](2)[/math] запроса.
  • Шаг 5. Удаление нулевых ребер. Обрезаем нулевые ребра при помощи [math](3)[/math] запроса. Переходим к шагу 2.
  • Конец.

Время работы

Link-Cut tree выполняет все вышеописанные запросы за [math]O(\log(N))[/math], оценим время работы алгоритма.

Очевидно, что просмотров ребер суммарно [math]O(E)[/math], как и в алгоритме Диница. Переход к следующему ребру происходит в следующих случаях:

  1. Просматриваемое ребро насыщено.
  2. Дерево разрезается по нулевому ребру.
  3. Ребро не лежит в сети кратчайших путей.

На каждый просмотр тратится не [math]O(1)[/math] а [math]O(\log(V))[/math], потому что перед тем, как посмотреть на следующее ребро делается запрос. Значит время работы этой части — [math]O(E \log(V))[/math].

Следующий шаг в алгоритме Диница — сумма длин путей. Раньше считалось за [math]O(V^2)[/math], так как на каждый путь обход в глубину тратил время, пропорциональное длине этого пути. Сейчас тратится только [math]O(\log(V))[/math] на каждый путь. Если путь найден, значит до него дошли, значит это соответствует одному запросу. Поэтому тратим на каждый путь тоже логарифм [math]O(\log(V))[/math].

Тогда имеем ассимптотику [math]O(E\log(V) + V \log(V)) = O((V + E) \log(V))[/math]. И, суммарно, если подставить в алгоритм Диница будем иметь ассимптотику [math]O(VE \log(V)) [/math].

См. также

Источники информации