Разрез, лемма о потоке через разрез — различия между версиями
(→Определение разреза) |
м (rollbackEdits.php mass rollback) |
||
(не показано 18 промежуточных версий 2 участников) | |||
Строка 1: | Строка 1: | ||
− | |||
{{Определение | {{Определение | ||
Строка 5: | Строка 4: | ||
<b><tex>(s,t)</tex>-разрезом</b> (англ. ''s-t cut'') <tex>\langle S,T\rangle</tex> в сети <tex>G</tex> называется пара множеств <tex>S,T</tex>, удоволетворяющих условиям: | <b><tex>(s,t)</tex>-разрезом</b> (англ. ''s-t cut'') <tex>\langle S,T\rangle</tex> в сети <tex>G</tex> называется пара множеств <tex>S,T</tex>, удоволетворяющих условиям: | ||
− | + | # <tex>s\in S, t\in T</tex> | |
− | + | # <tex>S = V\setminus T</tex> | |
− | |||
}} | }} | ||
− | |||
− | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Пропускная способность разреза''' <tex>\langle S,T\rangle</tex> обозначается <tex>c(S,T)</tex> и вычисляется по формуле: <tex>c(S,T)=\sum\limits_{u\in S}\sum\limits_{v\in T}c(u,v)</tex>. | + | '''Пропускная способность разреза''' (англ. ''capacity of the cut'') <tex>\langle S,T\rangle</tex> обозначается <tex>c(S,T)</tex> и вычисляется по формуле: <tex>c(S,T)=\sum\limits_{u\in S}\sum\limits_{v\in T}c(u,v)</tex>. |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Поток в разрезе''' <tex>\langle S,T\rangle</tex> обозначается <tex>f(S,T)</tex> и вычисляется по формуле: <tex>f(S,T)=\sum\limits_{u\in S}\sum\limits_{v\in T}f(u,v)</tex>. | + | '''Поток в разрезе''' (англ. ''flow in the cut'') <tex>\langle S,T\rangle</tex> обозначается <tex>f(S,T)</tex> и вычисляется по формуле: <tex>f(S,T)=\sum\limits_{u\in S}\sum\limits_{v\in T}f(u,v)</tex>. |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Минимальным разрезом''' называется разрез с минимально возможной пропускной способностью | + | '''Минимальным разрезом''' (англ. ''minimum cut'') называется разрез с минимально возможной пропускной способностью |
}} | }} | ||
{{Лемма | {{Лемма | ||
+ | |about = | ||
+ | о величине потока | ||
|statement = | |statement = | ||
− | Пусть <tex>\langle S,T\rangle</tex> | + | Пусть <tex>\langle S,T\rangle</tex> — разрез в <tex>G</tex>. Тогда <tex>f(S,T)=|f|</tex>. |
|proof = | |proof = | ||
<tex>f(S,T)=f(S,V)-f(S,S)=f(S,V)=f(S\setminus s,V)+f(s,V)=f(s,V)=|f|</tex> | <tex>f(S,T)=f(S,V)-f(S,S)=f(S,V)=f(S\setminus s,V)+f(s,V)=f(s,V)=|f|</tex> | ||
Строка 55: | Строка 53: | ||
{{Лемма | {{Лемма | ||
+ | |about = | ||
+ | о максимальном потоке и минимальном разрезе | ||
|statement = | |statement = | ||
Если <tex>f(S,T)=c(S,T)</tex>, то поток <tex>f</tex> — максимален, а разрез <tex>\langle S,T\rangle</tex> — минимален. | Если <tex>f(S,T)=c(S,T)</tex>, то поток <tex>f</tex> — максимален, а разрез <tex>\langle S,T\rangle</tex> — минимален. | ||
Строка 61: | Строка 61: | ||
Из закона слабой двойственности следует, что <tex>f(S_1,T_1)\leqslant c(S_2,T_2)</tex> для любых двух разрезов <tex>\langle S_1,T_1\rangle</tex> и <tex>\langle S_2,T_2\rangle</tex> в сети <tex>G</tex>, так как <tex>f(S_1,T_1)=|f|=f(S_2,T_2)\leqslant c(S_2,T_2)</tex>. | Из закона слабой двойственности следует, что <tex>f(S_1,T_1)\leqslant c(S_2,T_2)</tex> для любых двух разрезов <tex>\langle S_1,T_1\rangle</tex> и <tex>\langle S_2,T_2\rangle</tex> в сети <tex>G</tex>, так как <tex>f(S_1,T_1)=|f|=f(S_2,T_2)\leqslant c(S_2,T_2)</tex>. | ||
Значит, если расположить все величины потоков и разрезов на оси OX, то у потоков с разрезами может быть максимум 1 точка пересечения. | Значит, если расположить все величины потоков и разрезов на оси OX, то у потоков с разрезами может быть максимум 1 точка пересечения. | ||
− | Очевидно, что эта точка определяет максимальный поток среди всех потоков и минимальный разрез среди всех разрезов сети <tex>G</tex>. | + | Очевидно, что эта точка определяет максимальный поток среди всех потоков и минимальный разрез среди всех разрезов сети <tex>G</tex>.}} |
− | [[Файл:разрезы.png|мини|слева| | + | |
− | + | ||
+ | [[Файл:разрезы.png|мини|слева|800x600px|Среди всех разрезов сети разрез с минимальной пропускной способностью определяет максимальный поток в сети.]] | ||
+ | |||
+ | <br clear="all"> | ||
+ | |||
+ | {|border="1" class="wikitable" style="width: 400px; height: 150px; float: слева;" | ||
+ | |+ style="caption-side:bottom; "|''Минимальный разрез — 1 с пропускной способностью 60'' | ||
+ | |||
+ | |- | ||
+ | | '''Разрез'''|| '''"Разрезанные" ребра'''|| '''Пропускная способность''' | ||
+ | |- | ||
+ | |||
+ | |1 | ||
+ | | (1,2),(1,3),(1,4) | ||
+ | | 10+30+20=60 | ||
+ | |||
+ | |- | ||
+ | | 2 | ||
+ | |(1,3),(1,4),(2,3),(2,5) | ||
+ | |30+10+40+30=110 | ||
+ | |||
+ | |- | ||
+ | |3 | ||
+ | |(2,5),(3,5),(4,5) | ||
+ | | 30+20+20=70 | ||
+ | |||
+ | |} | ||
== Источники информации == | == Источники информации == |
Текущая версия на 19:27, 4 сентября 2022
Определение: |
Определение: |
Пропускная способность разреза (англ. capacity of the cut) | обозначается и вычисляется по формуле: .
Определение: |
Поток в разрезе (англ. flow in the cut) | обозначается и вычисляется по формуле: .
Определение: |
Минимальным разрезом (англ. minimum cut) называется разрез с минимально возможной пропускной способностью |
Лемма (о величине потока): |
Пусть — разрез в . Тогда . |
Доказательство: |
|
Лемма (закон слабой двойственности потока и разреза): |
Пусть — разрез в . Тогда . |
Доказательство: |
, из-за ограничений пропускных способностей . |
Лемма (о максимальном потоке и минимальном разрезе): |
Если , то поток — максимален, а разрез — минимален. |
Доказательство: |
Из закона слабой двойственности следует, что Очевидно, что эта точка определяет максимальный поток среди всех потоков и минимальный разрез среди всех разрезов сети для любых двух разрезов и в сети , так как . Значит, если расположить все величины потоков и разрезов на оси OX, то у потоков с разрезами может быть максимум 1 точка пересечения. . |
Разрез | "Разрезанные" ребра | Пропускная способность |
1 | (1,2),(1,3),(1,4) | 10+30+20=60 |
2 | (1,3),(1,4),(2,3),(2,5) | 30+10+40+30=110 |
3 | (2,5),(3,5),(4,5) | 30+20+20=70 |
Источники информации
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)
- Википедия: Разрез графа
- Википедия: Разрез графа (англ.)