Разрез, лемма о потоке через разрез — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 6 промежуточных версий 2 участников) | |||
Строка 64: | Строка 64: | ||
− | [[Файл:разрезы.png|мини|слева|800x600px| Среди всех разрезов сети разрез с минимальной пропускной способностью определяет максимальный поток в сети. ]] | + | [[Файл:разрезы.png|мини|слева|800x600px|Среди всех разрезов сети разрез с минимальной пропускной способностью определяет максимальный поток в сети.]] |
− | {| class="wikitable" style=" | + | <br clear="all"> |
− | |+ style="caption-side:bottom; "|'' | + | |
− | + | {|border="1" class="wikitable" style="width: 400px; height: 150px; float: слева;" | |
− | + | |+ style="caption-side:bottom; "|''Минимальный разрез — 1 с пропускной способностью 60'' | |
− | |||
|- | |- | ||
− | | | + | | '''Разрез'''|| '''"Разрезанные" ребра'''|| '''Пропускная способность''' |
− | | | + | |- |
− | + | ||
+ | |1 | ||
+ | | (1,2),(1,3),(1,4) | ||
+ | | 10+30+20=60 | ||
+ | |||
|- | |- | ||
− | + | | 2 | |
− | + | |(1,3),(1,4),(2,3),(2,5) | |
− | + | |30+10+40+30=110 | |
+ | |||
|- | |- | ||
− | + | |3 | |
− | + | |(2,5),(3,5),(4,5) | |
− | + | | 30+20+20=70 | |
− | + | ||
+ | |} | ||
== Источники информации == | == Источники информации == |
Текущая версия на 19:27, 4 сентября 2022
Определение: |
Определение: |
Пропускная способность разреза (англ. capacity of the cut) | обозначается и вычисляется по формуле: .
Определение: |
Поток в разрезе (англ. flow in the cut) | обозначается и вычисляется по формуле: .
Определение: |
Минимальным разрезом (англ. minimum cut) называется разрез с минимально возможной пропускной способностью |
Лемма (о величине потока): |
Пусть — разрез в . Тогда . |
Доказательство: |
|
Лемма (закон слабой двойственности потока и разреза): |
Пусть — разрез в . Тогда . |
Доказательство: |
, из-за ограничений пропускных способностей . |
Лемма (о максимальном потоке и минимальном разрезе): |
Если , то поток — максимален, а разрез — минимален. |
Доказательство: |
Из закона слабой двойственности следует, что Очевидно, что эта точка определяет максимальный поток среди всех потоков и минимальный разрез среди всех разрезов сети для любых двух разрезов и в сети , так как . Значит, если расположить все величины потоков и разрезов на оси OX, то у потоков с разрезами может быть максимум 1 точка пересечения. . |
Разрез | "Разрезанные" ребра | Пропускная способность |
1 | (1,2),(1,3),(1,4) | 10+30+20=60 |
2 | (1,3),(1,4),(2,3),(2,5) | 30+10+40+30=110 |
3 | (2,5),(3,5),(4,5) | 30+20+20=70 |
Источники информации
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)
- Википедия: Разрез графа
- Википедия: Разрез графа (англ.)