Многопоточная сортировка слиянием — различия между версиями
Shersh (обсуждение | вклад) м (→Источники информации) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 2 промежуточные версии 2 участников) | |||
Строка 14: | Строка 14: | ||
В данном алгоритме оператор <tex>\mathrm {spawn}</tex> запускает новый поток, а оператор <tex>\mathrm {sync}</tex> ожидает завершения этого потока. Функция <tex>\mathrm {merge}</tex> аналогична одноименной функции из раздела [[Сортировка слиянием#Слияние двух массивов|слияние двух массивов]].<br> | В данном алгоритме оператор <tex>\mathrm {spawn}</tex> запускает новый поток, а оператор <tex>\mathrm {sync}</tex> ожидает завершения этого потока. Функция <tex>\mathrm {merge}</tex> аналогична одноименной функции из раздела [[Сортировка слиянием#Слияние двух массивов|слияние двух массивов]].<br> | ||
− | Несмотря на наличие двух рекурсивных вызовов, при оценке будем считать, что совершается один вызов, т.к. оба вызова выполняются параллельно с одинаковой асимптотикой. Оценим время работы данного алгоритма: <tex | + | Несмотря на наличие двух рекурсивных вызовов, при оценке будем считать, что совершается один вызов, т.к. оба вызова выполняются параллельно с одинаковой асимптотикой. Оценим время работы данного алгоритма: <tex>T(n) = T(\dfrac {n}{2}) + \Theta(n) = \Theta(n)</tex>. Данная асимптотика достигается при возможности запускать неограниченное количество потоков независимо друг от друга.<br> |
==Многопоточное слияние== | ==Многопоточное слияние== | ||
Строка 58: | Строка 58: | ||
Оба массива содержат <tex dpi="120">n_{1} + n_{2} = n</tex> элементов. К моменту рекурсивных вызовов <tex dpi="120">n_{2} \leqslant n_{1}</tex>, значит,<br> | Оба массива содержат <tex dpi="120">n_{1} + n_{2} = n</tex> элементов. К моменту рекурсивных вызовов <tex dpi="120">n_{2} \leqslant n_{1}</tex>, значит,<br> | ||
− | <tex | + | <tex>n_{2} = 2 \cdot \dfrac{n_{2}}{2} \leqslant \dfrac{(n_{1} + n_{2})}{2} = \dfrac{n}{2}</tex>.<br> |
− | В худшем случае один из двух рекурсивных вызовов сольет <tex | + | В худшем случае один из двух рекурсивных вызовов сольет <tex>\dfrac{n_{1}}{2}</tex> элементов <tex dpi="120">T[left_{1} \dots right_{1}]</tex> с <tex dpi="120">n_{2}</tex> элементами <tex dpi="120">T[left_{2} \dots right_{2}]</tex> и тогда количество элементов первых двух массивов в рекурсивном вызове будет равно<br> |
− | <tex | + | <tex>\dfrac{n_{1}}{2} + n_{2} \leqslant \dfrac{n_{1}}{2} + \dfrac{n_{2}}{2} + \dfrac{n_{2}}{2} = \dfrac{(n_{1} + n_{2})}{2} + \dfrac{n_{2}}{2} \leqslant \dfrac{n}{2} + \dfrac{n}{4} = \dfrac{3}{4}n</tex>.<br>Асимптотика каждого вызова функции — <tex dpi="120">\Theta(\log n)</tex>, т.е. время, затрачиваемое на бинарный поиск. Так как рекурсивные вызовы функции выполняются параллельно, а потоки при оценке независимы, время их выполнения будет равно времени выполнения самого долгого вызова. В худшем случае это <tex>T(\dfrac{3}{4}n)</tex>. Тогда получим оценку сверху<br><tex>T_{\mathrm {merge}}(n) = T_{\mathrm {merge}}(\dfrac{3}{4}n) + \Theta(\log n) = \Theta(\log^2 n)</tex> |
==Сортировка с многопоточным слиянием== | ==Сортировка с многопоточным слиянием== | ||
Строка 78: | Строка 78: | ||
mergeMT(T, 1, newMid, newMid + 1, n, B, leftB) | mergeMT(T, 1, newMid, newMid + 1, n, B, leftB) | ||
− | Оценим данный алгоритм сверху при условии, что возможен запуск неограниченного количества независимых потоков. Из предыдущих пунктов <tex | + | Оценим данный алгоритм сверху при условии, что возможен запуск неограниченного количества независимых потоков. Из предыдущих пунктов <tex>T_{\mathrm {mergeSort}}(n) = T_{\mathrm {mergeSort}}(\dfrac{n}{2}) + T_{\mathrm {merge}}(n) = T_{\mathrm {mergeSort}}(\dfrac{n}{2}) + \Theta(\log^2 n) = \Theta(\log^3 n)</tex>. |
==Оценка при фиксированном числе потоков== | ==Оценка при фиксированном числе потоков== | ||
Понятно, что при отсутствии возможности запуска неограниченного количества независимых потоков, вычислительная сложность многопоточного алгоритма зависит от максимально возможного количества независимых потоков. Обозначим такое количество как <tex dpi="120">N_{ind}</tex>. Допустим, <tex dpi="120">n</tex> много больше <tex dpi="120">N_{ind}</tex>, что в общем случае верно для ПК и достаточно больших объемов данных. Оценим приведенные выше алгоритмы с учетом наложенных ограничений и допущений:<br> | Понятно, что при отсутствии возможности запуска неограниченного количества независимых потоков, вычислительная сложность многопоточного алгоритма зависит от максимально возможного количества независимых потоков. Обозначим такое количество как <tex dpi="120">N_{ind}</tex>. Допустим, <tex dpi="120">n</tex> много больше <tex dpi="120">N_{ind}</tex>, что в общем случае верно для ПК и достаточно больших объемов данных. Оценим приведенные выше алгоритмы с учетом наложенных ограничений и допущений:<br> | ||
− | ::[[#Сортировка с однопоточным слиянием|Сортировка с однопоточным слиянием]] будет иметь асимптотику <tex | + | ::[[#Сортировка с однопоточным слиянием|Сортировка с однопоточным слиянием]] будет иметь асимптотику <tex>\Theta(\dfrac{n}{N_{ind}}\log \dfrac{n}{N_{ind}} + n) = \Theta(\dfrac{n}{N_{ind}}\log \dfrac{n}{N_{ind}})</tex>: |
− | ::::<tex | + | ::::<tex>\Theta(\dfrac{n}{N_{ind}}\log \dfrac{n}{N_{ind}})</tex> операций нужно на последовательную сортировку массива длиной <tex>\dfrac{n}{N_{ind}}</tex>. |
::::<tex dpi="135">\Theta(n)</tex> необходимо на последовательное слияние. | ::::<tex dpi="135">\Theta(n)</tex> необходимо на последовательное слияние. | ||
− | ::[[#Многопоточное слияние|Многопоточное слияние]] будет работать за <tex | + | ::[[#Многопоточное слияние|Многопоточное слияние]] будет работать за <tex>\Theta((\dfrac{n}{N_{ind}})^{\log_{\frac{4}{3}}2} + \log n \cdot min(N_{ind}, \log n)=\Theta((\dfrac{n}{N_{ind}})^{\log_{\frac{4}{3}}2})</tex>: |
::::Прежде чем достигнуть ограничения на создание нового потока, алгоритм углубится на <tex dpi="110">min(N_{ind}, \log n)</tex> уровней вглубь дерева рекурсии, где на каждом уровне выполняется бинпоиск за <tex dpi="135">\Theta(\log n)</tex> | ::::Прежде чем достигнуть ограничения на создание нового потока, алгоритм углубится на <tex dpi="110">min(N_{ind}, \log n)</tex> уровней вглубь дерева рекурсии, где на каждом уровне выполняется бинпоиск за <tex dpi="135">\Theta(\log n)</tex> | ||
::::Асимптотика многопоточного слияния при работе в одном потоке по основной теореме рекуррентных соотношений равна | ::::Асимптотика многопоточного слияния при работе в одном потоке по основной теореме рекуррентных соотношений равна | ||
− | ::::<tex | + | ::::<tex>T_{\mathrm {merge}}'(n) = 2T_{\mathrm {merge}}'(\frac {3}{4}n) + \Theta(\log n) = \Theta(n^{\log_{\frac{4}{3}}2})</tex> |
::Оценим [[#Сортировка с многопоточным слиянием|сортировку с многопоточным слиянием]] снизу: | ::Оценим [[#Сортировка с многопоточным слиянием|сортировку с многопоточным слиянием]] снизу: | ||
− | ::::Части массива длиной <tex | + | ::::Части массива длиной <tex>\dfrac{n}{N_{ind}}</tex> гарантированно будут сортироваться последовательно, т.к. только алгоритм сортировки запустит к моменту вызова <tex>\mathrm {mergeSortMT2} </tex> от массива длиной <tex>\dfrac{n}{N_{ind}}</tex> число потоков, равное <tex dpi="135">N_{ind}</tex>. Тогда по основной теореме рекуррентных соотношений: |
− | ::::<tex | + | ::::<tex>T_{\mathrm {mergeSort}}'(\dfrac{n}{N_{ind}}) = 2T_{\mathrm {mergeSort}}'(\dfrac{n}{2N_{ind}}) + \Theta(\dfrac{n}{N_{ind}})^{\log_{\frac{4}{3}}2} = \Theta(\dfrac{n}{N_{ind}})^{\log_{\frac{4}{3}}2}</tex> |
− | Очевидно, что нижняя оценка алгоритма сортировки с многопоточным слиянием выше. Таким образом, при приведенных выше допущениях алгоритм сортировки с однопоточным слиянием эффективнее и его асимптотика составляет <tex | + | Очевидно, что нижняя оценка алгоритма сортировки с многопоточным слиянием выше. Таким образом, при приведенных выше допущениях алгоритм сортировки с однопоточным слиянием эффективнее и его асимптотика составляет <tex>\Theta(\dfrac{n}{N_{ind}}\log \dfrac{n}{N_{ind}})</tex>. |
==См. также== | ==См. также== |
Текущая версия на 19:27, 4 сентября 2022
Содержание
Многопоточная сортировка слиянием
Благодаря тому, что сортировка слиянием построена на принципе "Разделяй и властвуй", выполнение данного алгоритма можно весьма эффективно распараллелить. При оценке асимптотики допускается, что возможен запуск неограниченного количества независимых процессов, т.е. процессов с вычислительными ресурсами, не зависящими от других процессов, что на практике не достижимо. Более того, при реализации имеет смысл ограничить количество параллельных потоков.
Сортировка с однопоточным слиянием
Внесем в алгоритм сортировки слиянием следующую модификацию: будем сортировать левую и правую части массива параллельно.
function mergeSortMT(array, left, right): mid = (left + right) / 2 spawn mergeSortMT(array, left, mid) mergeSortMT(array, mid + 1, right) sync merge(array, left, mid, right)
В данном алгоритме оператор слияние двух массивов.
Несмотря на наличие двух рекурсивных вызовов, при оценке будем считать, что совершается один вызов, т.к. оба вызова выполняются параллельно с одинаковой асимптотикой. Оценим время работы данного алгоритма: . Данная асимптотика достигается при возможности запускать неограниченное количество потоков независимо друг от друга.
Многопоточное слияние
Как видно из оценки первого алгоритма, слияние является его узким местом. Попытаемся распараллелить слияние, для чего рассмотрим алгоритм рекурсивного слияния массивов
и в массив :- Убедимся, что размер больше либо равен размеру
- Возьмем — середину первого массива ( также является и медианой этого массива)
- При помощи бинарного поиска найдем такое, что
- Сольем и в
- Сольем и в
Алгоритм показан на рисунке:
Реализация
// есливозвращает // если , возвращает // иначе возвращает наибольший индекс из отрезка такой, что integer binarySearch(x, array, left, right) // слияние и в function mergeMT(T, left , right , left , right , A, left ): n = right - left + 1 n = right - left + 1 if n < n swap(left , left ) swap(right , right ) swap(n , n ) if n == 0 return else mid = (left + right ) / 2 mid = binarySearch(T[mid ], T, left , right ) mid = left + (mid - left ) + (mid - left ) A[mid ] = T[mid ] spawn mergeMT(T, left , mid - 1, left , mid - 1, A, left ) mergeMT(T, mid + 1, right , mid , right , A, mid + 1) sync
Оба массива содержат
.
В худшем случае один из двух рекурсивных вызовов сольет элементов с элементами и тогда количество элементов первых двух массивов в рекурсивном вызове будет равно
.
Асимптотика каждого вызова функции — , т.е. время, затрачиваемое на бинарный поиск. Так как рекурсивные вызовы функции выполняются параллельно, а потоки при оценке независимы, время их выполнения будет равно времени выполнения самого долгого вызова. В худшем случае это . Тогда получим оценку сверху
Сортировка с многопоточным слиянием
Приведем псевдокод алгоритма, использующего слияние из предыдущего раздела, сортирующего элементы
и помещающего отсортированный массив в function mergeSortMT2(A, leftA, rightA, B, leftB):
n = r - p + 1
if n == 1
B[leftB] = A[leftA]
else
создадим новый массив T[1
n]
mid = (leftA + rightA) / 2
newMid = mid - leftA + 1
spawn mergeSortMT2(A, leftA, mid, T, 1)
mergeSortMT2(A, mid + 1, rightA, T, newMid + 1)
sync
mergeMT(T, 1, newMid, newMid + 1, n, B, leftB)
Оценим данный алгоритм сверху при условии, что возможен запуск неограниченного количества независимых потоков. Из предыдущих пунктов
.Оценка при фиксированном числе потоков
Понятно, что при отсутствии возможности запуска неограниченного количества независимых потоков, вычислительная сложность многопоточного алгоритма зависит от максимально возможного количества независимых потоков. Обозначим такое количество как
- Сортировка с однопоточным слиянием будет иметь асимптотику :
- операций нужно на последовательную сортировку массива длиной .
- необходимо на последовательное слияние.
- Многопоточное слияние будет работать за :
- Прежде чем достигнуть ограничения на создание нового потока, алгоритм углубится на уровней вглубь дерева рекурсии, где на каждом уровне выполняется бинпоиск за
- Асимптотика многопоточного слияния при работе в одном потоке по основной теореме рекуррентных соотношений равна
- Оценим сортировку с многопоточным слиянием снизу:
- Части массива длиной гарантированно будут сортироваться последовательно, т.к. только алгоритм сортировки запустит к моменту вызова от массива длиной число потоков, равное . Тогда по основной теореме рекуррентных соотношений:
- Сортировка с однопоточным слиянием будет иметь асимптотику :
Очевидно, что нижняя оценка алгоритма сортировки с многопоточным слиянием выше. Таким образом, при приведенных выше допущениях алгоритм сортировки с однопоточным слиянием эффективнее и его асимптотика составляет
.См. также
Источники информации
- Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. — Introduction to Algorithms, Third Edition