Энтропия случайного источника — различия между версиями
Mervap (обсуждение | вклад) м (Fix ticket) |
м (rollbackEdits.php mass rollback) |
||
(не показано 5 промежуточных версий 4 участников) | |||
Строка 12: | Строка 12: | ||
* Функция <tex>H(p_1, p_2, \dots, p_n)</tex> определена и непрерывна для всех таких наборов <tex>p_i\in[0,\;1]</tex>, что <tex> \sum\limits_{i = 1}^{n} p_i = 1</tex> | * Функция <tex>H(p_1, p_2, \dots, p_n)</tex> определена и непрерывна для всех таких наборов <tex>p_i\in[0,\;1]</tex>, что <tex> \sum\limits_{i = 1}^{n} p_i = 1</tex> | ||
− | * <tex dpi ="130">H | + | * <tex dpi ="130">H \underbrace{ \left( \dfrac{1}{n}, \dfrac{1}{n}, \dots, \dfrac{1}{n} \right)}_\text{n} < H \underbrace{ \left( \dfrac{1}{n+1}, \dfrac{1}{n+1}, \dots, \dfrac{1}{n+1} \right) }_\text{n+1}</tex> |
* <tex dpi ="130"> H(p_{1}q_{11}, p_{1}q_{12}, \dots, p_{n}q_{nk_n}) = H(p_1, p_2, \dots, p_n) + \sum\limits_{i=1}^{n} p_iH(q_{i1}, \dots, q_{ik_i})</tex> | * <tex dpi ="130"> H(p_{1}q_{11}, p_{1}q_{12}, \dots, p_{n}q_{nk_n}) = H(p_1, p_2, \dots, p_n) + \sum\limits_{i=1}^{n} p_iH(q_{i1}, \dots, q_{ik_i})</tex> | ||
Строка 78: | Строка 78: | ||
Рассмотрим [[Вероятностное пространство, элементарный исход, событие|вероятностное пространство]] {{---}} честная монета. | Рассмотрим [[Вероятностное пространство, элементарный исход, событие|вероятностное пространство]] {{---}} честная монета. | ||
Найдем для нее энтропию: | Найдем для нее энтропию: | ||
− | :<tex dpi="140">H(X) = -\sum\limits_{i=1}^{n} p_i \log_2p_i = -\sum\limits_{i=1}^{2} { | + | :<tex dpi="140">H(X) = -\sum\limits_{i=1}^{n} p_i \log_2p_i = -\sum\limits_{i=1}^{2} {\dfrac{1}{2} \cdot \log_2 \dfrac{1}{2}} = -\sum\limits_{i=1}^{2} {\dfrac{1}{2} \cdot (-1)} = 1</tex> |
Это означает что после броска честной монеты мы получим информацию в размере <tex>1</tex> бит, уменьшив степень неопределенности вдвое. | Это означает что после броска честной монеты мы получим информацию в размере <tex>1</tex> бит, уменьшив степень неопределенности вдвое. | ||
Строка 128: | Строка 128: | ||
*[[Вероятностное пространство, элементарный исход, событие|Вероятностное пространство, элементарный исход, событие]] | *[[Вероятностное пространство, элементарный исход, событие|Вероятностное пространство, элементарный исход, событие]] | ||
*[[Условная вероятность|Условная вероятность]] | *[[Условная вероятность|Условная вероятность]] | ||
+ | *[[Арифметическое кодирование|Арифметическое кодирование]] | ||
== Источники информации == | == Источники информации == |
Текущая версия на 19:28, 4 сентября 2022
Содержание
Определение
Определение: |
Энтропия случайного источника (англ. Shannon entropy) — функция от вероятностей исходов: | , характеризующая количество информации, приходящейся на одно сообщение источника.
Свойства
Энтропия должна удовлетворять следующим требованиям:
- Функция определена и непрерывна для всех таких наборов , что
Рассмотрим схему
c исходами и вероятностями и схему с исходами и вероятностями .Образуем комбинированную схему c
исходами следующим образом:Выбирается случайным образом один из исходов схемы
, и если произошел -й исход, выбирается случайно один из исходов схемы , а остальные исходов схемы считаются окончательными.В этой комбинированной схеме
мы получаем исходы с вероятностямиЛегко видеть, что
.Потребуем выполнения этого свойства для любой меры неопределенности.
Вычисление энтропии
Для доказательства формулы вычисления энтропии сначала докажем лемму.
Лемма: |
Доказательство: |
Будем рассматривать для (бит).Рассмотрим функцию :Пусть: , тогда иРассмотрим такое , чтоМожно заметить, что если , то неравенство останется верным.По предыдущим рассуждениям получаем, что: Делим неравенство на :
|
Теорема: |
Доказательство: |
Теперь рассмотрим функцию Приведем дроби внутри функции к одному знаменателю, получаем: Далее по свойству энтропии и доказанной лемме: |
Примеры
Энтропия честной монеты
Рассмотрим вероятностное пространство — честная монета. Найдем для нее энтропию:
Это означает что после броска честной монеты мы получим информацию в размере
бит, уменьшив степень неопределенности вдвое.Энтропия нечестной монеты
Найдем энтропию для вероятностного пространства нечестная монета с распределением Бернулли :
Ограниченность энтропии
Теорема: |
Доказательство: |
1) Докажем первую часть неравенства: Так как , тогда . Таким образом2) Докажем вторую часть неравенства: Таким образом получаем, что — выпуклая вверх функция, и , тогда для нее выполняется неравенство Йенсена: |
Тогда из теоремы и доказанной выше леммы следует, что для n исходов энтропия максимальна, если они все равновероятны.
Условная и взаимная энтропия
Определение: |
Условная энтропия (англ. conditional entropy) — определяет количество остающейся энтропии (то есть, остающейся неопределенности) события | после того, как становится известным результат события . Она называется энтропия при условии , и обозначается
Определение: |
Взаимная энтропия (англ. joint entropy) — энтропия объединения двух событий | и .
Утверждение: |
По формуле условной вероятности
Таким образом получаем, что: Аналогично: Из двух полученных равенств следует, что |
См. также
- Вероятностное пространство, элементарный исход, событие
- Условная вероятность
- Арифметическое кодирование
Источники информации
- И.В. Романовский "Дискретный анализ"
- Википедия — Информационная энтропия
- Wkipedia — Entropy(information_theory)