Алгоритм Бржозовского — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 7 промежуточных версий 2 участников) | |||
Строка 14: | Строка 14: | ||
'''Левым языком''' (англ. ''left language'') называется язык <tex>L_g(q)</tex>, распознаваемый автоматом <tex>\mathcal{A}</tex>, в котором <tex>q</tex> является уникальным терминальным состоянием. | '''Левым языком''' (англ. ''left language'') называется язык <tex>L_g(q)</tex>, распознаваемый автоматом <tex>\mathcal{A}</tex>, в котором <tex>q</tex> является уникальным терминальным состоянием. | ||
}} | }} | ||
+ | |||
+ | Таким образом, допустимые слова языка <tex>L</tex>, проходящие через состояние <tex>q</tex>, фактически разделяются на два языка, а соединение соответствующих слов этих языков по всем состояниям даст исходный язык <tex>L</tex>.<br> | ||
+ | Рассмотрим слово <tex>y</tex> из левого языка <tex>L_g(q)</tex>. Тогда множество слов <tex>L_d(q)</tex> {{---}} [[Контексты_и_синтаксические_моноиды|правый контекст]] слова <tex>y</tex> в языке <tex>L</tex>. Аналогично для правого языка и левого контекста. | ||
{{Утверждение | {{Утверждение | ||
Строка 19: | Строка 22: | ||
|statement= | |statement= | ||
Автомат является детерминированным тогда и только тогда, когда левые языки его состояний попарно не пересекаются. | Автомат является детерминированным тогда и только тогда, когда левые языки его состояний попарно не пересекаются. | ||
+ | |proof=Рассмотрим состояния <tex>q</tex> и <tex>q'</tex> (<tex>q \neq q'</tex>) в ДКА. Пусть левые языки этих состояний пересекаются, то есть <tex>L_g(q) \cap L_g(q') = \{ w \}</tex>.<br>По окончании процесса допуска слова <tex>w</tex> мы оказываемся в состоянии <tex>q</tex> или <tex>q'</tex>. Следовательно, из какого-то состояния на пути в терминальное существует несколько различных переходов по одному из символов <tex>w</tex>, а значит <tex>\mathcal{A}</tex> {{---}} НКА. Получаем противоречие. | ||
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Обратное слово''' <tex>r(u)</tex> для слова <tex>u</tex> определяется следующим образом: <tex>r(\varepsilon) = \varepsilon</tex> и если <tex>u = u_1 u_2 u_3 \dotsc u_p</tex>, тогда <tex>r(u) = v_1 v_2 v_3 \dotsc v_p</tex>, где <tex>v_i = u_{p - i + 1}</tex>. | + | '''Обратное слово''' (англ. ''reverse of the word'') <tex>r(u)</tex> для слова <tex>u</tex> определяется следующим образом: <tex>r(\varepsilon) = \varepsilon</tex> и если <tex>u = u_1 u_2 u_3 \dotsc u_p</tex>, тогда <tex>r(u) = v_1 v_2 v_3 \dotsc v_p</tex>, где <tex>v_i = u_{p - i + 1}</tex>. |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Обратный язык''' для языка <tex>L</tex> {{---}} язык <tex>r(L) = \{ u \mid r(u) \in L \}</tex>. | + | '''Обратный язык''' (англ. ''reverse of the language'') для языка <tex>L</tex> {{---}} язык <tex>r(L) = \{ u \mid r(u) \in L \}</tex>. |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Обратный автомат''' для автомата <tex>\mathcal{A} = \langle \Sigma , Q , S , T , \delta \rangle</tex> {{---}} автомат <tex>r(\mathcal{A}) = \langle \Sigma , Q , T , I , r(\delta) \rangle</tex>, полученный из <tex>\mathcal{A}</tex> сменой местами начальных и конечных состояний и сменой направлений переходов. | + | '''Обратный автомат''' (англ. ''reverse of the automaton'') для автомата <tex>\mathcal{A} = \langle \Sigma , Q , S , T , \delta \rangle</tex> {{---}} автомат <tex>r(\mathcal{A}) = \langle \Sigma , Q , T , I , r(\delta) \rangle</tex>, полученный из <tex>\mathcal{A}</tex> сменой местами начальных и конечных состояний и сменой направлений переходов. |
}} | }} | ||
Строка 75: | Строка 79: | ||
|about=5 | |about=5 | ||
|statement= | |statement= | ||
− | Детерминированный | + | Детерминированный автомат минимален тогда и только тогда, когда правые языки его состояний различны и все состояния достижимы. |
+ | |proof= | ||
+ | Рассмотрим состояния <tex>q</tex> и <tex>q'</tex> (<tex>q \neq q'</tex>) в ДКА. Пусть их правые языки <tex>L_d(q) = L_d(q')</tex>. Тогда состояния <tex>q</tex> и <tex>q'</tex> можно объединить в одно.<br> | ||
+ | Если состояние <tex>q</tex> недостижимо из начального состояния <tex>s</tex>, то его можно удалить из автомата {{---}} это никак не повлияет на язык <tex>L</tex>. | ||
}} | }} | ||
Строка 85: | Строка 92: | ||
* Он работает даже с [[Недетерминированные конечные автоматы|недетерминированными конечными автоматами]]. | * Он работает даже с [[Недетерминированные конечные автоматы|недетерминированными конечными автоматами]]. | ||
− | + | Введём следующие обозначения: | |
− | + | *<tex>\mathcal{A}</tex> {{---}} конечный автомат, | |
+ | *<tex>d(\mathcal{A})</tex> {{---}} детерминизированный автомат для <tex>\mathcal{A}</tex>, | ||
+ | *<tex>r(\mathcal{A})</tex> {{---}} обратный автомат для <tex>\mathcal{A}</tex>, | ||
+ | *<tex>dr(\mathcal{A})</tex> {{---}} результат <tex>d(r(\mathcal{A}))</tex>. Аналогично для <tex>rdr(\mathcal{A})</tex> и <tex>drdr(\mathcal{A})</tex>. | ||
{{Теорема | {{Теорема | ||
Строка 120: | Строка 130: | ||
[[Категория: Теория формальных языков]] | [[Категория: Теория формальных языков]] | ||
[[Категория: Автоматы и регулярные языки]] | [[Категория: Автоматы и регулярные языки]] | ||
+ | [[Категория: Минимизация ДКА]] |
Текущая версия на 19:29, 4 сентября 2022
Задача: |
Пусть дан автомат . Требуется построить автомат с наименьшим количеством состояний, распознающий тот же язык, что и . |
Содержание
Описание
Пусть
— состояние автомата .Определение: |
Правым языком (англ. right language) называется язык | , распознаваемый автоматом , в котором является уникальным начальным состоянием.
Определение: |
Левым языком (англ. left language) называется язык | , распознаваемый автоматом , в котором является уникальным терминальным состоянием.
Таким образом, допустимые слова языка , проходящие через состояние , фактически разделяются на два языка, а соединение соответствующих слов этих языков по всем состояниям даст исходный язык .
Рассмотрим слово из левого языка . Тогда множество слов — правый контекст слова в языке . Аналогично для правого языка и левого контекста.
Утверждение (1): |
Автомат является детерминированным тогда и только тогда, когда левые языки его состояний попарно не пересекаются. |
Рассмотрим состояния По окончании процесса допуска слова мы оказываемся в состоянии или . Следовательно, из какого-то состояния на пути в терминальное существует несколько различных переходов по одному из символов , а значит — НКА. Получаем противоречие. | и ( ) в ДКА. Пусть левые языки этих состояний пересекаются, то есть .
Определение: |
Обратное слово (англ. reverse of the word) | для слова определяется следующим образом: и если , тогда , где .
Определение: |
Обратный язык (англ. reverse of the language) для языка | — язык .
Определение: |
Обратный автомат (англ. reverse of the automaton) для автомата | — автомат , полученный из сменой местами начальных и конечных состояний и сменой направлений переходов.
Утверждение (2): |
Если распознает язык , то распознает . |
Утверждение (3): |
Если левый язык состояния в — , тогда его левый язык в — . Аналогично для правого языка . |
Пусть НКА.
Тогда детерминированный автомат определяется следующим образом:
- Детерминированному состоянию соответствует множество недетерминированных состояний: для каждого имеем ,
- Начальное состояние в — множество из начальных состояний автомата ,
- Состояние в детерминированном автомате является терминальным тогда и только тогда, когда оно содержится хотя бы в одном недетерминированном состоянии,
- Пусть — состояние детерминированного автомата и – символ из . Если переход из по символу определен, тогда, по построению: .
Утверждение (4): |
Правый язык состояния эквивалентен объединению правых языков состояний автомата , принадлежащих множеству . |
Определение: |
Левое отношение (англ. left quotient) регулярного языка | для слова из — язык .
Минимальный автомат для регулярного языка определяется следующим образом:
- множество состояний — это множество левых отношений языка ,
- начальное состояние — ,
- терминальные состояния — множество отношений, содержащих пустое слово,
- функция перехода .
Автомат
уникален с точностью до изоморфизма и имеет минимальное количество состояний.Утверждение (5): |
Детерминированный автомат минимален тогда и только тогда, когда правые языки его состояний различны и все состояния достижимы. |
Рассмотрим состояния |
Алгоритм
Описание
Алгоритм минимизации конечных автоматов Бржозовского (Janusz A. (John) Brzozowski) выделяется, по крайней мере, следующими качествами:
- Он элегантен и весьма оригинален.
- Он эффективен.
- Он работает даже с недетерминированными конечными автоматами.
Введём следующие обозначения:
- — конечный автомат,
- — детерминизированный автомат для ,
- — обратный автомат для ,
- — результат . Аналогично для и .
Теорема (Бржозовский, 1962): |
Пусть — автомат (необязательно детерминированный), распознающий язык . Минимальный детерминированный автомат может быть вычислен следующим образом: . |
Доказательство: |
По построению автомат |
Пример работы
- Исходный НКА :
- Первый шаг,
- Второй шаг,
В детерминизированных автоматах состояния переименованы, так что всегда является начальным состоянием.
: - Третий шаг,
После выполнения этого шага алгоритма оба состояния и являются начальными.
: - Заключительный шаг,
Заключение
Самым эффективным алгоритмом минимизации принято считать алгоритм Хопкрофта, который, как и прочие традиционные алгоритмы, работает только с ДКА. Его асимптотическое время выполнения зависит от логарифма исходных данных. С другой стороны очевидно, что алгоритм Бржозовского в худшем случае будет обладать экспоненциальным временем выполнения, ведь этого требует процедура детерминизации, выполняемая дважды. На практике же наблюдается парадокс, алгоритм Бржозовского во многих случаях опережает прочие подходы к минимизации, включая и алгоритм Хопкрофта. В работе[1], сравнивающей оба алгоритма, показано, что алгоритм Бржозовского оказывается эффективнее алгоритма Хопкрофта для автоматов с большим числом переходов.
См. также
- Минимизация ДКА, алгоритм за O(n^2) с построением пар различимых состояний
- Минимизация ДКА, алгоритм Хопкрофта (сложность O(n log n))