Алгоритм Дейкстры — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показаны 4 промежуточные версии 3 участников) | |||
Строка 15: | Строка 15: | ||
'''for''' <tex>i \in V</tex> | '''for''' <tex>i \in V</tex> | ||
v = ''null'' | v = ''null'' | ||
− | '''for''' <tex>j \in V</tex> <font color="green">// | + | '''for''' <tex>j \in V</tex> <font color="green">// найдём вершину с минимальным расстоянием</font> |
'''if''' !used[j] '''and''' (v == ''null'' '''or''' d[j] < d[v]) | '''if''' !used[j] '''and''' (v == ''null'' '''or''' d[j] < d[v]) | ||
v = j | v = j | ||
Строка 32: | Строка 32: | ||
|proof= | |proof= | ||
Докажем по индукции, что в момент посещения любой вершины <tex>u</tex>, <tex>d(u) = \rho(s, u)</tex>. | Докажем по индукции, что в момент посещения любой вершины <tex>u</tex>, <tex>d(u) = \rho(s, u)</tex>. | ||
− | * На первом шаге выбирается <tex>s</tex>, для | + | * На первом шаге выбирается <tex>s</tex>, для неё выполнено: <tex>d(s) = \rho(s, s) = 0</tex> |
* Пусть для <tex>n</tex> первых шагов алгоритм сработал верно и на <tex>n + 1</tex> шагу выбрана вершина <tex>u</tex>. Докажем, что в этот момент <tex>d(u) = \rho(s, u)</tex>. Для начала отметим, что для любой вершины <tex>v</tex>, всегда выполняется <tex>d(v) \geqslant \rho(s, v)</tex> (алгоритм не может найти путь короче, чем кратчайший из всех существующих). Пусть <tex>P</tex> — кратчайший путь из <tex>s</tex> в <tex>u</tex>, <tex>v</tex> {{---}} первая непосещённая вершина на <tex>P</tex>, <tex>z</tex> {{---}} предшествующая ей (следовательно, посещённая). Поскольку путь <tex>P</tex> кратчайший, его часть, ведущая из <tex>s</tex> через <tex>z</tex> в <tex>v</tex>, тоже кратчайшая, следовательно <tex>\rho(s, v) = \rho(s, z) + w(zv)</tex>. По предположению индукции, в момент посещения вершины <tex>z</tex> выполнялось <tex>d(z) = \rho(s, z)</tex>, следовательно, вершина <tex>v</tex> тогда получила метку не больше чем <tex>d(z) + w(zv) = \rho(s, z) + w(zv) = \rho(s, v)</tex>, следовательно, <tex>d(v) = \rho(s, v)</tex>. С другой стороны, поскольку сейчас мы выбрали вершину <tex>u</tex>, её метка минимальна среди непосещённых, то есть <tex>d(u) \leqslant d(v) = \rho(s, v) \leqslant \rho(s, u)</tex>, где второе неравенсто верно из-за ранее упомянутого определения вершины <tex>v</tex> в качестве первой непосещённой вершины на <tex>P</tex>, то есть вес пути до промежуточной вершины не превосходит веса пути до конечной вершины вследствие неотрицательности весовой функции. Комбинируя это с <tex>d(u) \geqslant \rho(s, u)</tex>, имеем <tex>d(u) = \rho(s, u)</tex>, что и требовалось доказать. | * Пусть для <tex>n</tex> первых шагов алгоритм сработал верно и на <tex>n + 1</tex> шагу выбрана вершина <tex>u</tex>. Докажем, что в этот момент <tex>d(u) = \rho(s, u)</tex>. Для начала отметим, что для любой вершины <tex>v</tex>, всегда выполняется <tex>d(v) \geqslant \rho(s, v)</tex> (алгоритм не может найти путь короче, чем кратчайший из всех существующих). Пусть <tex>P</tex> — кратчайший путь из <tex>s</tex> в <tex>u</tex>, <tex>v</tex> {{---}} первая непосещённая вершина на <tex>P</tex>, <tex>z</tex> {{---}} предшествующая ей (следовательно, посещённая). Поскольку путь <tex>P</tex> кратчайший, его часть, ведущая из <tex>s</tex> через <tex>z</tex> в <tex>v</tex>, тоже кратчайшая, следовательно <tex>\rho(s, v) = \rho(s, z) + w(zv)</tex>. По предположению индукции, в момент посещения вершины <tex>z</tex> выполнялось <tex>d(z) = \rho(s, z)</tex>, следовательно, вершина <tex>v</tex> тогда получила метку не больше чем <tex>d(z) + w(zv) = \rho(s, z) + w(zv) = \rho(s, v)</tex>, следовательно, <tex>d(v) = \rho(s, v)</tex>. С другой стороны, поскольку сейчас мы выбрали вершину <tex>u</tex>, её метка минимальна среди непосещённых, то есть <tex>d(u) \leqslant d(v) = \rho(s, v) \leqslant \rho(s, u)</tex>, где второе неравенсто верно из-за ранее упомянутого определения вершины <tex>v</tex> в качестве первой непосещённой вершины на <tex>P</tex>, то есть вес пути до промежуточной вершины не превосходит веса пути до конечной вершины вследствие неотрицательности весовой функции. Комбинируя это с <tex>d(u) \geqslant \rho(s, u)</tex>, имеем <tex>d(u) = \rho(s, u)</tex>, что и требовалось доказать. | ||
Строка 41: | Строка 41: | ||
В реализации алгоритма присутствует функция выбора вершины с минимальным значением <tex>d</tex> и релаксация по всем рёбрам для данной вершины. Асимптотика работы зависит от реализации. | В реализации алгоритма присутствует функция выбора вершины с минимальным значением <tex>d</tex> и релаксация по всем рёбрам для данной вершины. Асимптотика работы зависит от реализации. | ||
− | Пусть <tex>n</tex> - количество вершин в графе, <tex>m</tex> - количество рёбер в графе. | + | Пусть <tex>n</tex> {{---}} количество вершин в графе, <tex>m</tex> {{---}} количество рёбер в графе. |
{| class="wikitable" | {| class="wikitable" | ||
Строка 75: | Строка 75: | ||
Изначально поместим в контейнер стартовую вершину <tex>s</tex>. Основной цикл будет выполняться, пока в контейнере есть хотя бы одна вершина. На каждой итерации извлекается вершина с наименьшим расстоянием <tex>d</tex> и выполняются релаксации по рёбрам из неё. При выполнении успешной релаксации нужно удалить из контейнера вершину, до которой обновляем расстояние, а затем добавить её же, но с новым расстоянием. | Изначально поместим в контейнер стартовую вершину <tex>s</tex>. Основной цикл будет выполняться, пока в контейнере есть хотя бы одна вершина. На каждой итерации извлекается вершина с наименьшим расстоянием <tex>d</tex> и выполняются релаксации по рёбрам из неё. При выполнении успешной релаксации нужно удалить из контейнера вершину, до которой обновляем расстояние, а затем добавить её же, но с новым расстоянием. | ||
− | <br>В обычных кучах нет операции удаления произвольного элемента. При релаксации можно не удалять старые пары, в результате чего в куче может находиться одновременно несколько пар расстояние-вершина для одной вершины (с разными расстояниями). Для корректной работы при извлечении из кучи будем проверять расстояние: пары, в которых расстояние отлично от <tex>d[v]</tex> будем игнорировать. | + | <br>В обычных кучах нет операции удаления произвольного элемента. При релаксации можно не удалять старые пары, в результате чего в куче может находиться одновременно несколько пар расстояние-вершина для одной вершины (с разными расстояниями). Для корректной работы при извлечении из кучи будем проверять расстояние: пары, в которых расстояние отлично от <tex>d[v]</tex> будем игнорировать. При этом асимптотика будет <tex>O(m\log{m})</tex> вместо <tex>O(m\log{n})</tex>. |
== Источники информации == | == Источники информации == |
Текущая версия на 19:30, 4 сентября 2022
Задача: |
Для заданного взвешенного графа | найти кратчайшие пути из заданной вершины до всех остальных вершин. Веса всех рёбер неотрицательны.
Содержание
Алгоритм
В ориентированном взвешенном графе , вес рёбер которого неотрицателен и определяется весовой функцией , алгоритм Дейкстры находит длины кратчайших путей из заданной вершины до всех остальных.
В алгоритме поддерживается множество вершин , для которых уже вычислены длины кратчайших путей до них из . На каждой итерации основного цикла выбирается вершина , которой на текущий момент соответствует минимальная оценка кратчайшего пути. Вершина добавляется в множество и производится релаксация всех исходящих из неё рёбер.
Псевдокод
func dijkstra(s): ford[v] = used[v] = false d[s] = 0 for v = null for // найдём вершину с минимальным расстоянием if !used[j] and (v == null or d[j] < d[v]) v = j if d[v] == break used[v] = true for e : исходящие из v рёбра // произведём релаксацию по всем рёбрам, исходящим из v if d[v] + e.len < d[e.to] d[e.to] = d[v] + e.len
Обоснование корректности
Теорема: |
Пусть — ориентированный взвешенный граф, вес рёбер которого неотрицателен, — стартовая вершина.
Тогда после выполнения алгоритма Дейкстры для всех , где — длина кратчайшего пути из вершины в вершину |
Доказательство: |
Докажем по индукции, что в момент посещения любой вершины , .
|
Оценка сложности
В реализации алгоритма присутствует функция выбора вершины с минимальным значением
и релаксация по всем рёбрам для данной вершины. Асимптотика работы зависит от реализации.Пусть
— количество вершин в графе, — количество рёбер в графе.Время работы | Описание | |||
---|---|---|---|---|
Поиск минимума | Релаксация | Общее | ||
Наивная реализация | раз осуществляем поиск вершины с минимальной величиной среди непомеченных вершин и раз проводим релаксацию за . Для плотных графов ( ) данная асимптотика является оптимальной. | |||
Двоичная куча | Используя двоичную кучу можно выполнять операции извлечения минимума и обновления элемента за | . Тогда время работы алгоритма Дейкстры составит .|||
Фибоначчиева куча | Используя Фибоначчиевы кучи можно выполнять операции извлечения минимума за | и обновления элемента за . Таким образом, время работы алгоритма составит .
На практике удобно использовать стандартные контейнеры (например, std::set или std::priority_queue в C++).
При реализации необходимо хранить вершины, которые упорядочены по величине , для этого в контейнер можно помещать пару — расстояние-вершина. В результате будут храниться пары, упорядоченные по расстоянию.
Изначально поместим в контейнер стартовую вершину
В обычных кучах нет операции удаления произвольного элемента. При релаксации можно не удалять старые пары, в результате чего в куче может находиться одновременно несколько пар расстояние-вершина для одной вершины (с разными расстояниями). Для корректной работы при извлечении из кучи будем проверять расстояние: пары, в которых расстояние отлично от будем игнорировать. При этом асимптотика будет вместо .
Источники информации
- Томас Х. Кормен, Чарльз И. Лейзерсон, Рональд Л. Ривест, Клиффорд Штайн Алгоритмы: построение и анализ — 2-е изд. — М.: «Вильямс», 2007. — с. 459. — ISBN 5-8489-0857-4
- MAXimal :: algo :: Нахождение кратчайших путей от заданной вершины до всех остальных вершин алгоритмом Дейкстры
- Википедия — Алгоритм Дейкстры
- Wikipedia — Dijkstra's algorithm