Получение объекта по номеру — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Пример)
м (rollbackEdits.php mass rollback)
 
(не показаны 144 промежуточные версии 13 участников)
Строка 1: Строка 1:
== Определение ==
+
== Описание алгоритма ==
 +
Получаем элементы объекта по порядку: сначала определим, какой элемент будет стоять на первом месте, потом на втором и так далее. Считаем, что мы нашли первые <tex>i</tex> элементов объекта. Для всех вариантов элемента, который может стоять на позиции с номером <tex>i+1</tex>, посчитаем диапазон номеров, который будет соответствовать объектам с данным префиксом. Если искомый номер входит в один из диапазонов, то, очевидно, мы нашли элемент, который должен стоять на месте с номером <tex>i+1</tex>. Диапазоны номеров не пересекаются, значит на это место больше нельзя поставить никакой другой элемент:
  
'''Получение объекта по номеру n'''- это нахождение объекта, который стоит n-ым в лексикографическом порядке.
+
*в начале каждого шага <tex>\mathtt{numOfObject}</tex> {{---}} номер нужного объекта среди тех, у которых префикс до <tex>i</tex>-го элемента лексикографически равен префиксу нашего объекта,
 +
*<tex>\mathtt{n}</tex> {{---}} количество мест в комбинаторном объекте (например, битовый вектор длины <tex>n</tex>),
 +
*<tex>\mathtt{k}</tex> {{---}} количество различных элементов, которые могут находиться в данном комбинаторном объекте. Например, для битового вектора <tex>k=2</tex>, поскольку возможны только <tex>0</tex> и <tex>1</tex>.  Все элементы занумерованы в лексикографическом порядке, начиная с <tex>1</tex>.
 +
Комбинаторные объекты занумерованы с <tex>0</tex>. Переход к нумерации с единицы можно сделать с помощью одной операции декремента перед проходом алгоритма:
 +
'''function''' num2object(numOfObject: '''int'''):
 +
  '''for''' i = 1 '''to''' n                    
 +
    '''for''' j = 1 '''to''' k                     
 +
      '''if''' j-й элемент можно поставить на i-e место
 +
        '''if''' numOfObject >= (количество комбинаторных объектов с префиксом object[1..i-1] и элементом j на месте i)
 +
          numOfObject -= (количество комбинаторных объектов с префиксом object[1..i-1] и элементом j на месте i)
 +
        '''else'''
 +
          object[i] = j
 +
          break
 +
  '''return''' object
 +
Сложность алгоритма {{---}} <tex>O(nk) </tex>. Количества комбинаторных объектов с заданными префиксами считаются известными, и их подсчет в сложности не учитывается. Стоит отметить, что подсчет количества комбинаторных объектов с заданным префиксом зачастую является задачей с достаточно большой вычислительной сложностью.
 +
Приведем примеры получения некоторых [[Комбинаторные объекты|комбинаторных объектов]] по номеру.
  
== Пример ==
+
== Битовые вектора ==
 +
Рассмотрим алгоритм получения <tex>k</tex>-ого в лексикографическом порядке битового вектора размера <tex>n</tex>.
 +
При построении битовых векторов можно не проверять условие возможности постановки какого-то объекта на текущее место. На каждый позиции может стоять один из двух элементов, независимо от того, какие элементы находятся в префиксе. Так как у нас всего два возможных элемента, упростим второй цикл до условия:
  
Возьмем перестановки из 3-х элементов в лексикографическом порядке, найдем перестановку под номером 4:
+
*<tex>\mathtt{bitvector[n]}</tex> {{---}} искомый битовый вектор,
 +
*<tex>\mathtt{numOfBitvector}</tex> {{---}} номер искомого вектора среди всех битовых векторов,
 +
*<tex>\mathtt{pow(2, n)}</tex> {{---}} <tex>2^{n}</tex> количество битовых векторов длины <tex>n</tex>,
 +
'''vector<int>''' num2bitvector(numOfBitvector: '''int'''):
 +
  '''for''' i = 1 '''to''' n                                     
 +
    '''if''' numOfBitvector >= pow(2, (n - i))
 +
      numOfBitvector -= pow(2, (n - i))
 +
      bitvector[i] = 1
 +
    '''else'''
 +
      bitvector[i] = 0   
 +
  '''return''' bitvector   
 +
Данный алгоритм работает за <tex>O(n)</tex>, так как в случае битовых векторов <tex>k</tex> не зависит от <tex>n</tex>.
 +
Алгоритм эквивалентен переводу числа из десятичной системы в двоичную.
  
123,
+
== Перестановки ==
132,
+
Рассмотрим алгоритм получения <tex>k</tex>-ой в [[Лексикографический порядок|лексикографическом порядке]] перестановки размера <tex>n</tex>.
213,
+
Заметим, что всем префиксам на каждом шаге будет соответствовать диапазон номеров одинакового размера, (так как количество всевозможных суффиксов зависит только от длины) то есть можем просто посчитать "количество диапазонов, которые идут до нас" (количество цифр уже полностью занятых перестановками с меньшим номером) за <tex>O(1) </tex>:
'''231''',
 
312,
 
321
 
  
Искомая перестановка: 231.
+
*<tex>\mathtt{k}</tex> {{---}} номер искомой последовательности,
 +
*<tex>\mathtt{n!}</tex> {{---}} количество перестановок размера <tex>n</tex>,
 +
*<tex>\mathtt{permutation[n]}</tex> {{---}} искомая перестановка,
 +
*<tex>\mathtt{was[n]}</tex> {{---}} использовали ли мы уже эту цифру в перестановке.
 +
На <tex>i</tex>-ом шаге:
 +
*<tex>\mathtt{alreadyWas}</tex> {{---}} сколько цифр уже полностью заняты перестановками с меньшим номером,
 +
*мы должны поставить ту цифру, которая еще полностью не занята, то есть цифру с номером <tex>alreadyWas + 1</tex>. Среди цифр, которых еще нет в нашем префиксе, считаем, что это цифра <tex>j</tex>.
 +
На <tex>j</tex>-ом шаге:
 +
*<tex>\mathtt{curFree}</tex> {{---}} если элемент с номером <tex>j</tex> свободен, то он имеет номер curFree среди всех свободных элементов с <tex>1</tex> по <tex>j</tex>.
 +
'''list<int>''' num2permutation(k: '''int'''):
 +
  '''for''' i = 1 '''to''' n                             
 +
    alreadyWas = k / (n - i)!     
 +
    k %= (n - i)!
 +
    curFree = 0
 +
    '''for''' j = 1 '''to''' n 
 +
      '''if''' was[j] == ''false''
 +
        curFree++
 +
        '''if''' curFree == alreadyWas + 1
 +
          permutation[i] = j
 +
          was[j] = true
 +
  '''return''' permutation
  
== Алгоритм ==
+
Данный алгоритм работает за <tex>O(n^2)</tex>, так как в случае перестановок <tex>n=k</tex>. Мы можем посчитать все <tex>\mathtt{n!}</tex> за <tex>O(n) </tex>. Асимптотику можно улучшить
 +
до <tex>O(n \log {n}) </tex>, если использовать структуры данных (например, [[Декартово дерево|декартово дерево]] по неявному ключу), которые позволяют искать <tex>i</tex>-й элемент множества и удалять элемент
 +
множества за <tex>O( \log {n}) </tex>.
  
Пусть <tex>l</tex> - длина объекта. Идем по порядку по всем элементам объекта (<tex>i</tex> - позиция элемента в объекте). Каждый элемент <tex>p</tex> будет являться максимально возможным. Для <tex>p</tex> кол-во возможных объектов <tex>s</tex>, начинающихся на элемент  <tex>p</tex> и имеющих длину <tex>l-i+1</tex>, не превосходит <tex>n</tex>. С каждым шагом <tex>n</tex> уменьшается на <tex>s</tex>.
+
== Сочетания ==
 +
На каждой итерации мы проверяем, входит ли число <tex>\mathtt{next}</tex> в искомое сочетание. Если мы хотим взять <tex>\mathtt{next}</tex>, то номер сочетания должен быть меньше, чем <tex dpi=140>\binom{n - 1}{k - 1}</tex>, так как потом надо будет выбрать <tex>k - 1</tex> элемент из <tex>n - 1</tex> доступных. Если нет, то будем считать, что <tex dpi=140>\binom{n - 1}{k - 1}</tex> сочетаний, начинающихся с <tex>\mathtt{next}</tex>, мы пропустили. В обоих случаях рассмотрение текущего числа <tex>next</tex> мы заканчиваем и переходим к следующему числу.
 +
*<tex>\mathtt{choose}</tex> {{---}} искомое сочетание,
 +
*<tex>\mathtt{C[n][k]}</tex> {{---}} количество сочетаний из <tex>n</tex> по <tex>k</tex>, <tex>\mathtt{C[n][0] = 1}</tex>,
  
== Алгоритм нахождение перестановки по номеру ==
+
'''list<int>''' num2choose(n, k, m: '''int'''):
 +
  next = 1
 +
  '''while''' k > 0
 +
    '''if''' m < C[n - 1][k - 1]
 +
      choose.push_back(next)
 +
      k = k - 1
 +
    '''else'''
 +
      m -= C[n - 1][k - 1]
 +
    n = n - 1
 +
    next = next + 1
 +
  '''return''' choose
 +
Асимптотика приведенного алгоритма {{---}} <tex>O(n)</tex>, предподсчет <tex>\mathtt{C[n][k]}</tex>  {{---}} <tex>O(n^2)</tex>
  
Возьмем к примеру нахождение перестановки по номеру. Сначала определяем первую цифру перестановки, деля номер на (N-1)! и прибавляя 1, затем вторую, деля остаток от предыдущего деления на (N-2)!, и т.д.
+
== См. также ==
 
+
*[[Получение номера по объекту|Получение номера по объекту]]
== Пример нахождения перестановки по номеру==
+
*[[Получение_предыдущего_объекта#.D0.A1.D0.BF.D0.B5.D1.86.D0.B8.D0.B0.D0.BB.D0.B8.D0.B7.D0.B0.D1.86.D0.B8.D1.8F_.D0.B0.D0.BB.D0.B3.D0.BE.D1.80.D0.B8.D1.82.D0.BC.D0.B0_.D0.B4.D0.BB.D1.8F_.D0.B3.D0.B5.D0.BD.D0.B5.D1.80.D0.B0.D1.86.D0.B8.D0.B8_.D0.BF.D1.80.D0.B5.D0.B4.D1.8B.D0.B4.D1.83.D1.89.D0.B5.D0.B3.D0.BE_.D1.81.D0.BE.D1.87.D0.B5.D1.82.D0.B0.D0.BD.D0.B8.D1.8F|Получение предыдущего сочетания]]
 
+
*[[Получение_следующего_объекта#.D0.A1.D0.BF.D0.B5.D1.86.D0.B8.D0.B0.D0.BB.D0.B8.D0.B7.D0.B0.D1.86.D0.B8.D1.8F_.D0.B0.D0.BB.D0.B3.D0.BE.D1.80.D0.B8.D1.82.D0.BC.D0.B0_.D0.B4.D0.BB.D1.8F_.D0.B3.D0.B5.D0.BD.D0.B5.D1.80.D0.B0.D1.86.D0.B8.D0.B8_.D1.81.D0.BB.D0.B5.D0.B4.D1.83.D1.8E.D1.89.D0.B5.D0.B3.D0.BE_.D1.81.D0.BE.D1.87.D0.B5.D1.82.D0.B0.D0.BD.D0.B8.D1.8F|Генерация следующего сочетания]]
Возьмем номер перестановки из 4 элементов: 13. Определим первую цифру перестановки, разделим нацело номер на (4-1)! и прибавим 1: <tex>x_1</tex> = 13 div (3!) + 1 = 3. Остаток от деления: 1. Аналогично найдем 2-й элемент: <tex>x_2</tex> = 1 div (2!) + 1 = 1. Остаток от деления: 1. 3-й элемент: <tex>x_3</tex> = 1 div (1!)+1 = 1. Но т.к. число 1 уже использовалось в перестановке, возьмем следующий в лексикографическом порядке элемент, не используемый ранее, 2, следовательно <tex>x_3</tex> = 2. 4-ый элемент получается исключением <tex>x_4</tex> = 4. Получаем перстановку: 3124.
+
== Источники информации ==
 
+
*Программирование в алгоритмах / С. М. Окулов. — М.: БИНОМ. Лаборатория знаний, 2002. стр.31 - ISBN 5-94774-010-9
== Ссылки ==
+
[[Категория: Дискретная математика и алгоритмы]]
 
+
[[Категория: Комбинаторика]]
[http://www.chasolimp.de/practic_info63.htm Получение объекта по номеру и номера по объекту]
 

Текущая версия на 19:30, 4 сентября 2022

Описание алгоритма

Получаем элементы объекта по порядку: сначала определим, какой элемент будет стоять на первом месте, потом на втором и так далее. Считаем, что мы нашли первые [math]i[/math] элементов объекта. Для всех вариантов элемента, который может стоять на позиции с номером [math]i+1[/math], посчитаем диапазон номеров, который будет соответствовать объектам с данным префиксом. Если искомый номер входит в один из диапазонов, то, очевидно, мы нашли элемент, который должен стоять на месте с номером [math]i+1[/math]. Диапазоны номеров не пересекаются, значит на это место больше нельзя поставить никакой другой элемент:

  • в начале каждого шага [math]\mathtt{numOfObject}[/math] — номер нужного объекта среди тех, у которых префикс до [math]i[/math]-го элемента лексикографически равен префиксу нашего объекта,
  • [math]\mathtt{n}[/math] — количество мест в комбинаторном объекте (например, битовый вектор длины [math]n[/math]),
  • [math]\mathtt{k}[/math] — количество различных элементов, которые могут находиться в данном комбинаторном объекте. Например, для битового вектора [math]k=2[/math], поскольку возможны только [math]0[/math] и [math]1[/math]. Все элементы занумерованы в лексикографическом порядке, начиная с [math]1[/math].

Комбинаторные объекты занумерованы с [math]0[/math]. Переход к нумерации с единицы можно сделать с помощью одной операции декремента перед проходом алгоритма:

function num2object(numOfObject: int):
  for i = 1 to n                     
    for j = 1 to k                      
      if j-й элемент можно поставить на i-e место 
        if numOfObject >= (количество комбинаторных объектов с префиксом object[1..i-1] и элементом j на месте i)
          numOfObject -= (количество комбинаторных объектов с префиксом object[1..i-1] и элементом j на месте i)
        else
          object[i] = j
          break
  return object

Сложность алгоритма — [math]O(nk) [/math]. Количества комбинаторных объектов с заданными префиксами считаются известными, и их подсчет в сложности не учитывается. Стоит отметить, что подсчет количества комбинаторных объектов с заданным префиксом зачастую является задачей с достаточно большой вычислительной сложностью. Приведем примеры получения некоторых комбинаторных объектов по номеру.

Битовые вектора

Рассмотрим алгоритм получения [math]k[/math]-ого в лексикографическом порядке битового вектора размера [math]n[/math]. При построении битовых векторов можно не проверять условие возможности постановки какого-то объекта на текущее место. На каждый позиции может стоять один из двух элементов, независимо от того, какие элементы находятся в префиксе. Так как у нас всего два возможных элемента, упростим второй цикл до условия:

  • [math]\mathtt{bitvector[n]}[/math] — искомый битовый вектор,
  • [math]\mathtt{numOfBitvector}[/math] — номер искомого вектора среди всех битовых векторов,
  • [math]\mathtt{pow(2, n)}[/math][math]2^{n}[/math] количество битовых векторов длины [math]n[/math],
vector<int> num2bitvector(numOfBitvector: int):
  for i = 1 to n                                      
   if numOfBitvector >= pow(2, (n - i))
     numOfBitvector -= pow(2, (n - i))
     bitvector[i] = 1
   else
     bitvector[i] = 0    
  return bitvector    

Данный алгоритм работает за [math]O(n)[/math], так как в случае битовых векторов [math]k[/math] не зависит от [math]n[/math]. Алгоритм эквивалентен переводу числа из десятичной системы в двоичную.

Перестановки

Рассмотрим алгоритм получения [math]k[/math]-ой в лексикографическом порядке перестановки размера [math]n[/math]. Заметим, что всем префиксам на каждом шаге будет соответствовать диапазон номеров одинакового размера, (так как количество всевозможных суффиксов зависит только от длины) то есть можем просто посчитать "количество диапазонов, которые идут до нас" (количество цифр уже полностью занятых перестановками с меньшим номером) за [math]O(1) [/math]:

  • [math]\mathtt{k}[/math] — номер искомой последовательности,
  • [math]\mathtt{n!}[/math] — количество перестановок размера [math]n[/math],
  • [math]\mathtt{permutation[n]}[/math] — искомая перестановка,
  • [math]\mathtt{was[n]}[/math] — использовали ли мы уже эту цифру в перестановке.

На [math]i[/math]-ом шаге:

  • [math]\mathtt{alreadyWas}[/math] — сколько цифр уже полностью заняты перестановками с меньшим номером,
  • мы должны поставить ту цифру, которая еще полностью не занята, то есть цифру с номером [math]alreadyWas + 1[/math]. Среди цифр, которых еще нет в нашем префиксе, считаем, что это цифра [math]j[/math].

На [math]j[/math]-ом шаге:

  • [math]\mathtt{curFree}[/math] — если элемент с номером [math]j[/math] свободен, то он имеет номер curFree среди всех свободных элементов с [math]1[/math] по [math]j[/math].
list<int> num2permutation(k: int):
  for i = 1 to n                               
    alreadyWas = k / (n - i)!      
    k %= (n - i)!
    curFree = 0
    for j = 1 to n  
      if was[j] == false 
        curFree++
        if curFree == alreadyWas + 1
          permutation[i] = j
          was[j] = true
  return permutation

Данный алгоритм работает за [math]O(n^2)[/math], так как в случае перестановок [math]n=k[/math]. Мы можем посчитать все [math]\mathtt{n!}[/math] за [math]O(n) [/math]. Асимптотику можно улучшить до [math]O(n \log {n}) [/math], если использовать структуры данных (например, декартово дерево по неявному ключу), которые позволяют искать [math]i[/math]-й элемент множества и удалять элемент множества за [math]O( \log {n}) [/math].

Сочетания

На каждой итерации мы проверяем, входит ли число [math]\mathtt{next}[/math] в искомое сочетание. Если мы хотим взять [math]\mathtt{next}[/math], то номер сочетания должен быть меньше, чем [math]\binom{n - 1}{k - 1}[/math], так как потом надо будет выбрать [math]k - 1[/math] элемент из [math]n - 1[/math] доступных. Если нет, то будем считать, что [math]\binom{n - 1}{k - 1}[/math] сочетаний, начинающихся с [math]\mathtt{next}[/math], мы пропустили. В обоих случаях рассмотрение текущего числа [math]next[/math] мы заканчиваем и переходим к следующему числу.

  • [math]\mathtt{choose}[/math] — искомое сочетание,
  • [math]\mathtt{C[n][k]}[/math] — количество сочетаний из [math]n[/math] по [math]k[/math], [math]\mathtt{C[n][0] = 1}[/math],
list<int> num2choose(n, k, m: int):
  next = 1
  while k > 0
    if m < C[n - 1][k - 1]
      choose.push_back(next)
      k = k - 1
    else
      m -= C[n - 1][k - 1]
    n = n - 1
    next = next + 1
  return choose

Асимптотика приведенного алгоритма — [math]O(n)[/math], предподсчет [math]\mathtt{C[n][k]}[/math][math]O(n^2)[/math]

См. также

Источники информации

  • Программирование в алгоритмах / С. М. Окулов. — М.: БИНОМ. Лаборатория знаний, 2002. стр.31 - ISBN 5-94774-010-9