Топологические векторные пространства — различия между версиями
(больше дырок!) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 4 промежуточные версии 3 участников) | |||
Строка 38: | Строка 38: | ||
}} | }} | ||
− | {{ | + | {{Определение |
+ | |definition= | ||
+ | <tex> A </tex> '''ограничено''', если <tex> \forall U(0)\ \exists \lambda > 0: A \subset \lambda U(0) </tex> (то есть, его поглощает любая окрестность нуля). | ||
+ | }} | ||
Существует стандартная конструкция, которая позволяет уравновесить любое множество. | Существует стандартная конструкция, которая позволяет уравновесить любое множество. | ||
Строка 66: | Строка 69: | ||
В прямую сторону: | В прямую сторону: | ||
− | # Рассмотрим отображение <tex> | + | # Рассмотрим отображение <tex> f, f(x + x_0) = x</tex>, то есть, сдвиг на <tex> x_0 </tex>. Это отображение взаимно однозначно и непрерывно (так как оно может быть определено через непрерывную по определению ТВП операцию сложения, <tex>f(x) = x - x_0 </tex>). Прообраз открытого множества при непрерывном отображении открыт, то есть, если <tex> G \in \tau </tex> (открыто), то <tex> f^{-1}(G) = G + x_0 </tex> также открыто. Получили, что векторная топология инвариантна относительно сдвигов. |
# Установим, что можно создать базу окрестностей нуля, составляющую из радиально-уравновешенных множеств. <tex> \lambda x \to 0, x \to 0, \lambda \to 0 </tex>, то есть <tex> \forall U(0) \exists \delta > 0, W(0): |\lambda| \le \delta </tex> <tex> x \in W(0) \implies \lambda x \in U(0) \iff \lambda W(0) \subset U(0) \implies \bigcup\limits_{|\lambda| \le \delta} \lambda W(0) \subset U(0) </tex>, где <tex> \lambda W(0) </tex> — уравновешено и окрестность 0. | # Установим, что можно создать базу окрестностей нуля, составляющую из радиально-уравновешенных множеств. <tex> \lambda x \to 0, x \to 0, \lambda \to 0 </tex>, то есть <tex> \forall U(0) \exists \delta > 0, W(0): |\lambda| \le \delta </tex> <tex> x \in W(0) \implies \lambda x \in U(0) \iff \lambda W(0) \subset U(0) \implies \bigcup\limits_{|\lambda| \le \delta} \lambda W(0) \subset U(0) </tex>, где <tex> \lambda W(0) </tex> — уравновешено и окрестность 0. | ||
#: Для радиальности: <tex> \forall x_0 \in X, \lambda \to 0, \lambda x_0 \to 0 x_0 = 0 \implies \forall U(0) \exists \delta > 0: |\lambda| \le \delta, \lambda x_0 \in U(0) </tex>. <tex> x_0 \in {1 \over \lambda} U(0), |\lambda| \le \delta, \left| {1 \over \lambda} \right| \ge {1 \over \delta} </tex>, то есть <tex> U(0) </tex> поглощает <tex> x_0 </tex>. | #: Для радиальности: <tex> \forall x_0 \in X, \lambda \to 0, \lambda x_0 \to 0 x_0 = 0 \implies \forall U(0) \exists \delta > 0: |\lambda| \le \delta, \lambda x_0 \in U(0) </tex>. <tex> x_0 \in {1 \over \lambda} U(0), |\lambda| \le \delta, \left| {1 \over \lambda} \right| \ge {1 \over \delta} </tex>, то есть <tex> U(0) </tex> поглощает <tex> x_0 </tex>. | ||
Строка 113: | Строка 116: | ||
<tex> \forall \varepsilon > 0 \exists \lambda_1, \lambda_2: p_M(x) < \lambda_1 < p_M(x) + \varepsilon </tex>, <tex> p_M(y) < \lambda_2 < p_M(y) + \varepsilon </tex>, <tex> x \in \lambda_1 M, y \in \lambda_2 M \implies {x \over \lambda_1}, {y \over \lambda_2} \in M </tex>. Рассмотрим <tex> \alpha = {\lambda_1 \over \lambda_1 + \lambda_2}, \beta = {\lambda_2 \over \lambda_1 + \lambda_2} </tex>, заметим, что <tex> \alpha + \beta = 1 </tex>, из выпуклости получим, что <tex> \alpha {x \over \lambda_1} + \beta {y \over \lambda_2} \in M \implies {x + y \over \lambda_1 + \lambda_2} \in M \implies x + y \in (\lambda_1 + \lambda_2) M </tex>, то есть <tex> p_M(x + y) < \lambda_1 + \lambda_2 < p_M(x) + p_M(y) + 2 \varepsilon </tex>, сделав предельный переход, получим <tex> p_M(x + y) \le p_M(x) + p_M(y) </tex>. | <tex> \forall \varepsilon > 0 \exists \lambda_1, \lambda_2: p_M(x) < \lambda_1 < p_M(x) + \varepsilon </tex>, <tex> p_M(y) < \lambda_2 < p_M(y) + \varepsilon </tex>, <tex> x \in \lambda_1 M, y \in \lambda_2 M \implies {x \over \lambda_1}, {y \over \lambda_2} \in M </tex>. Рассмотрим <tex> \alpha = {\lambda_1 \over \lambda_1 + \lambda_2}, \beta = {\lambda_2 \over \lambda_1 + \lambda_2} </tex>, заметим, что <tex> \alpha + \beta = 1 </tex>, из выпуклости получим, что <tex> \alpha {x \over \lambda_1} + \beta {y \over \lambda_2} \in M \implies {x + y \over \lambda_1 + \lambda_2} \in M \implies x + y \in (\lambda_1 + \lambda_2) M </tex>, то есть <tex> p_M(x + y) < \lambda_1 + \lambda_2 < p_M(x) + p_M(y) + 2 \varepsilon </tex>, сделав предельный переход, получим <tex> p_M(x + y) \le p_M(x) + p_M(y) </tex>. | ||
− | <tex> p_M(\lambda x) = |\lambda| p_M(x) </tex> | + | Однородность: |
+ | |||
+ | <tex>p_M (\lambda x) = \inf \{r > 0: \lambda x \in r M \} = \inf \{r > 0: x \in \frac{r}{|\lambda|} M \} </tex> <tex>= \inf \{ | \lambda | \frac{r}{ | \lambda | } > 0: x \in \frac{r}{|\lambda|} M \} = |\lambda| p_M(x)</tex> | ||
}} | }} | ||
Строка 123: | Строка 128: | ||
|author=Колмогоров | |author=Колмогоров | ||
|statement= | |statement= | ||
− | + | Хаусдорфово ТВП нормируемо тогда и только тогда, когда у нуля есть ограниченная выпуклая окрестность. | |
|proof= | |proof= | ||
В прямую сторону: если ТВП нормируемо, то <tex> V_r = \{ x : \| x \| \le 1 \} </tex> | В прямую сторону: если ТВП нормируемо, то <tex> V_r = \{ x : \| x \| \le 1 \} </tex> | ||
− | {{TODO|t= | + | {{TODO|t= На всякий случай — доказательство вроде есть в Люстернике-Соболеве, стр 94, правда оно несколько другое вроде}} |
В обратную: пусть <tex> V </tex> — ограниченная выпуклая окрестность нуля. <tex> W </tex> — радиальная уравновешенная) окрестность 0: <tex> W \subset V </tex>, <tex> \mathrm{Cov} W </tex> — выпуклая оболочка множества <tex> W </tex>, <tex> V </tex> — выпуклая, <tex> \mathrm{Cov} W \subset V </tex>, <tex> \mathrm{Cov} W </tex> — радиальное уравновешенное множество, так как <tex> W </tex> — такое же. Из ограниченности <tex> V </tex> следует ограниченность <tex> \mathrm{Cov} W </tex>, то есть, мы построили <tex> V^* = \mathrm{Cov} W </tex> — радиальную уравновешенную выпуклую окрестность <tex> 0 </tex>. | В обратную: пусть <tex> V </tex> — ограниченная выпуклая окрестность нуля. <tex> W </tex> — радиальная уравновешенная) окрестность 0: <tex> W \subset V </tex>, <tex> \mathrm{Cov} W </tex> — выпуклая оболочка множества <tex> W </tex>, <tex> V </tex> — выпуклая, <tex> \mathrm{Cov} W \subset V </tex>, <tex> \mathrm{Cov} W </tex> — радиальное уравновешенное множество, так как <tex> W </tex> — такое же. Из ограниченности <tex> V </tex> следует ограниченность <tex> \mathrm{Cov} W </tex>, то есть, мы построили <tex> V^* = \mathrm{Cov} W </tex> — радиальную уравновешенную выпуклую окрестность <tex> 0 </tex>. |
Текущая версия на 19:31, 4 сентября 2022
Рассмотрим множество
. Множество таких функций образуют линейное пространство. Если определять предел в поточечном смысле, операции сложения и умножения на число в этом пространстве непрерывны. Мотивация введения топологических векторных пространств — обобщение этой ситуации на абстрактный случай.
Определение: |
Топологическое векторное пространство — линейное пространство, наделенной такой топологией, что операции сложения векторов и умножения на скаляр в ней непрерывны в этой топологии, то есть:
|
В ситуации , когда предел определен поточечно, если рассмотреть , объявить их окрестностями нулевой функции — в такой базе окрестности нуля функции будут непрерывны и предел будет поточечным.
Как охарактеризовать векторную топологию? Пусть
— линейное пространство, , тогда определимЗаметим, что
, но обратное не верно. Например, в , : , но .
Определение: |
закругленное/уравновешенное, если . |
Определение: |
поглощает , если . |
Определение: |
радиальное/поглощающее, если оно поглощает любую конечную систему точек. Для проверки радиальности достаточно проверить поглощение каждой конкретной точки. |
Определение: |
выпуклое, если , то есть множество содержит отрезок, соединяющий любые два его элемента. |
Определение: |
ограничено, если (то есть, его поглощает любая окрестность нуля). |
Существует стандартная конструкция, которая позволяет уравновесить любое множество.
Утверждение: |
Пусть и , и Тогда — уравновешенное. |
Пусть , проверим, что :. . . . Тогда . Тогда , но и , что и требовалось доказать. |
Теорема о характеристике векторной топологии
Теорема (характеристика векторной топологии): |
|
Доказательство: |
В прямую сторону:
В обратную сторону, то есть если соблюдаются эти три свойства, в этой топологии линейные операции непрерывны: Непрерывность сложения:
Непрерывность умножения: пусть , покажем что . Пусть , . Тогда . Покажем, что вторая скобка стремится к нулю.1) из радиальной окрестности нуля, значит стремится к нулю.2) , по условию теоремы — уравновешенное .3) по условию теоремы Получили, что скобка стремится к нулю, значит умножение непрерывно. . Раз — окрестность 0 если . |
Любое НП является частным случаем ТВП. Обратное в общем случае неверно, в связи с чем возникает вопрос о том, в каком случае ТВП можно нормировать. Ответ на него дает понятие функционала Минковского.
Определение: |
Пусть | — линейное пространство, — радиальное подмножество, тогда функционал Минковского определяется как .
Заметим, что если — радиальны и , то .
Пример:
- — НП, , сдедовательно, норма — частный случай функционала Минковского.
Утверждение: |
Если — уравновешенное радиальное выпуклое множество, — полунорма на . |
, , . Рассмотрим , заметим, что , из выпуклости получим, что , то есть , сделав предельный переход, получим . Однородность: |
Определение: |
Топологическое пространство | называется Хаусдорфовым, если
Теорема (Колмогоров): |
Хаусдорфово ТВП нормируемо тогда и только тогда, когда у нуля есть ограниченная выпуклая окрестность. |
Доказательство: |
В прямую сторону: если ТВП нормируемо, то
В обратную: пусть — ограниченная выпуклая окрестность нуля. — радиальная уравновешенная) окрестность 0: , — выпуклая оболочка множества , — выпуклая, , — радиальное уравновешенное множество, так как — такое же. Из ограниченности следует ограниченность , то есть, мы построили — радиальную уравновешенную выпуклую окрестность . — функционал Минковского — полунорма. ограничено, тогда — база окрестностей 0. Так как пространство Хаусдорфово, то , то есть — норма, а — база окрестностей нуля, нормируемых функционалом Минковского. |