Алгоритм Фарака-Колтона и Бендера — различия между версиями
Kirelagin (обсуждение | вклад) м (Мелкие правки) |
Kirelagin (обсуждение | вклад) (Быстрофикс) |
||
Строка 1: | Строка 1: | ||
− | '''Алгоритм Фарака-Колтона, Бендера (алгоритм Фарах-Колтона, Бендера)''' — применяется для решения специального случая задачи RMQ (поиск минимума на отрезке), в котором соседние элементы входной последовательности различаются на ±1 за <tex> | + | '''Алгоритм Фарака-Колтона, Бендера (алгоритм Фарах-Колтона, Бендера)''' — применяется для решения специального случая задачи RMQ (поиск минимума на отрезке), в котором соседние элементы входной последовательности различаются на ±1 за <tex>\langle O(N),O(1) \rangle</tex> времени. Может быть использован также для [[Сведение задачи LCA к задаче RMQ|решения задачи LCA]]. |
− | '''Вход:''' последовательность <tex>a_i</tex> длины <tex>N</tex>.<br/> | + | '''Вход:''' последовательность <tex>a_i</tex> длины <tex>N</tex>, соседние элементы которой отличаются на ±1.<br/> |
'''Выход:''' ответы на онлайн запросы вида «минимум на отрезке <tex>[i:j]</tex>». | '''Выход:''' ответы на онлайн запросы вида «минимум на отрезке <tex>[i:j]</tex>». | ||
Строка 7: | Строка 7: | ||
[[Файл:F-C_B_algo.png|right|thumb|Части, из которых состоит ответ на запрос RMQ]] | [[Файл:F-C_B_algo.png|right|thumb|Части, из которых состоит ответ на запрос RMQ]] | ||
− | Данный алгоритм основывается на методе решения задачи RMQ с помощью [[Решение RMQ с помощью разреженной таблицы|разреженной таблицы (sparse table, ST)]] за <tex> | + | Данный алгоритм основывается на методе решения задачи RMQ с помощью [[Решение RMQ с помощью разреженной таблицы|разреженной таблицы (sparse table, ST)]] за <tex>\langle O(N \log N),O(1) \rangle</tex>. |
Чтобы избавиться от логарифма используется предподсчёт ответа для небольших подстрок входной последовательности. Разделим последовательность <tex>a_i</tex> на блоки длины <tex>\frac{\log_2 N}{2}</tex>. Для каждого блока вычислим минимум на нём и определим <tex>b_i</tex> как позицию минимального элемента в <tex>i</tex>-том блоке. | Чтобы избавиться от логарифма используется предподсчёт ответа для небольших подстрок входной последовательности. Разделим последовательность <tex>a_i</tex> на блоки длины <tex>\frac{\log_2 N}{2}</tex>. Для каждого блока вычислим минимум на нём и определим <tex>b_i</tex> как позицию минимального элемента в <tex>i</tex>-том блоке. |
Версия 21:41, 10 мая 2011
Алгоритм Фарака-Колтона, Бендера (алгоритм Фарах-Колтона, Бендера) — применяется для решения специального случая задачи RMQ (поиск минимума на отрезке), в котором соседние элементы входной последовательности различаются на ±1 за решения задачи LCA.
времени. Может быть использован также дляВход: последовательность
Выход: ответы на онлайн запросы вида «минимум на отрезке ».
Алгоритм
Данный алгоритм основывается на методе решения задачи RMQ с помощью разреженной таблицы (sparse table, ST) за .
Чтобы избавиться от логарифма используется предподсчёт ответа для небольших подстрок входной последовательности. Разделим последовательность
на блоки длины . Для каждого блока вычислим минимум на нём и определим как позицию минимального элемента в -том блоке.На новой последовательности разреженную таблицу. Теперь для ответа на запрос RMQ , если и находятся в разных блоках, нам необходимо вычислить следующее:
построим- Минимум на отрезке от до конца содержащего блока.
- Минимум по всем блокам, находящимся между блоками, содержащими и .
- Минимум от начала блока, содержащего , до .
Ответом на запрос будет позиция меньшего из эти трёх элементов.
Второй элемент мы уже умеем находить за
с помощью и ST. Осталось научиться находить минимум по отрезку, границы которого не совпадают с границами блоков.Минимум внутри блока
Утверждение: |
Если две последовательности и таковы, что все их элементы на соответствующих позициях различаются на одну и ту же константу (т.е. ), то любой запрос RMQ даст один и тот же ответ для обеих последовательностей. |
Таким образом, мы можем нормализовать блок, вычтя из всех его элементов первый. Тем самым мы значительно уменьшим число возможных типов блоков.
Утверждение: |
Существует различных типов нормализованных блоков. |
Соседние элементы в блоках отичаются на ±1. Первый элемент в нормализованном блоке всегда равен нулю. Таким образом, каждый нормализованный блок может быть представлен ±1-вектором длины | . Таких векторов .
Осталось создать
таблиц — по одной для каждого типа блока. В такую таблицу необходимо занести предподсчитанные ответы на все возможные запросы минимума внутри блока соответствующего типа, коих . Для каждого блока в необходимо заранее вычислить его тип. Таким образом мы получили возможность отвечать на запрос минимума по любой части блока за , затратив на предподсчёт времени.Результат
Итого, на предподсчёт требуется
времени и памяти, а ответ на запрос вычисляется за .См. также
- Решение RMQ с помощью разреженной таблицы
- Сведение задачи RMQ к задаче LCA
- Сведение задачи LCA к задаче RMQ
Ссылки
- M. A. Bender and M. Farach-Colton. “The LCA Problem Revisited” LATIN, pages 88-94, 2000