Количество помеченных деревьев — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показаны 4 промежуточные версии 3 участников) | |||
Строка 1: | Строка 1: | ||
− | |||
{{Теорема | {{Теорема | ||
|author=Формула Кэли | |author=Формула Кэли | ||
Строка 21: | Строка 20: | ||
== Источники информации== | == Источники информации== | ||
− | + | *[http://rain.ifmo.ru/cat/view.php/theory/graph-general/cayley-2008 Дискретная математика: Алгоритмы. Формула Кэли] | |
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Остовные деревья ]] | [[Категория: Остовные деревья ]] | ||
[[Категория: Свойства остовных деревьев ]] | [[Категория: Свойства остовных деревьев ]] | ||
+ | [[Категория: Удалить]] |
Текущая версия на 19:35, 4 сентября 2022
Теорема (Формула Кэли): |
Число помеченных деревьев порядка равно . |
Доказательство: |
Можно доказать формулу двумя способами. Первый способ. Так как между помеченными деревьями порядка Код Прюфера), то количество помеченных деревьев совпадает с количеством последовательностей длины из чисел от до . и последовательностями длины из чисел от до существует биекция (Второй способ. С помощью матрицы Кирхгофа для полного графа на вершинах. Число помеченных деревьев порядка , очевидно, равно числу остовов в полном графе , которое есть по следствию теоремы Кирхгофа. |
См. также
- Матрица Кирхгофа
- Подсчет числа остовных деревьев с помощью матрицы Кирхгофа
- Связь матрицы Кирхгофа и матрицы инцидентности
- Коды Прюфера