Количество помеченных деревьев — различия между версиями
(→Источники информации) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 2 промежуточные версии 2 участников) | |||
Строка 25: | Строка 25: | ||
[[Категория: Остовные деревья ]] | [[Категория: Остовные деревья ]] | ||
[[Категория: Свойства остовных деревьев ]] | [[Категория: Свойства остовных деревьев ]] | ||
+ | [[Категория: Удалить]] |
Текущая версия на 19:35, 4 сентября 2022
Теорема (Формула Кэли): |
Число помеченных деревьев порядка равно . |
Доказательство: |
Можно доказать формулу двумя способами. Первый способ. Так как между помеченными деревьями порядка Код Прюфера), то количество помеченных деревьев совпадает с количеством последовательностей длины из чисел от до . и последовательностями длины из чисел от до существует биекция (Второй способ. С помощью матрицы Кирхгофа для полного графа на вершинах. Число помеченных деревьев порядка , очевидно, равно числу остовов в полном графе , которое есть по следствию теоремы Кирхгофа. |
См. также
- Матрица Кирхгофа
- Подсчет числа остовных деревьев с помощью матрицы Кирхгофа
- Связь матрицы Кирхгофа и матрицы инцидентности
- Коды Прюфера