Изменения

Перейти к: навигация, поиск

Декартово дерево

17 870 байт добавлено, 19:35, 4 сентября 2022
м
rollbackEdits.php mass rollback
''Эта статья про курево'Декартово дерево''' {{---}} это структура данных, объединяющая в себе бинарное дерево поиска и бинарную кучу (отсюда и второе её название: <tex>treap (tree+heap)</tex> и дерамида (дерево+пирамида).
Более строго, '''Декартово дерево или дерамида''' (англ. ''Treap'') {{---}} это структура данных, которая хранит пары <tex> (X,Y) </tex> объединяющая в виде бинарного дерева таким образомсебе [[Дерево поиска, что она является бинарным деревом наивная реализация|бинарное дерево поиска по <tex>x</tex> ]] и бинарной пирамидой по <tex>y</tex>. Предполагая, что все <tex>X</tex> [[Двоичная куча|бинарную кучу]] (отсюда и второе её название: treap (tree + heap) и все <tex>Y</tex> являются различными, получаем, что если некоторый элемент дерева содержит <tex>дерамида (X_0,Y_0дерево + пирамида)</tex>, то <tex>у</tex> всех элементов в левом поддереве <tex>X < X_0</tex>, у всех элементов в правом поддереве <tex> X > X_0</tex>, а также и в левом, и в правом поддереве имеем: <tex> Y < Y_0</tex>существует название курево (куча + дерево).
Дерамиды были предложены Сиделем Более строго, это бинарное дерево, в узлах которого хранятся пары <tex> (Siedelx,y) </tex>, где <tex>x</tex> {{---}} это ключ, а <tex>y</tex> {{---}} это приоритет. Также оно является двоичным деревом поиска по <tex>x</tex> и Арагоном пирамидой по <tex>y</tex>. Предполагая, что все <tex>x</tex> и все <tex>y</tex> являются различными, получаем, что если некоторый элемент дерева содержит <tex>(Aragonx_0,y_0) </tex>, то у всех элементов в левом поддереве <tex>x < x_0</tex>, у всех элементов в правом поддереве <tex> x > x_0</tex>, а также и в левом, и в 1996 гправом поддереве имеем: <tex> y < y_0</tex>.== Операция split ==
Тут будет splitДерамиды были предложены Сиделем (Siedel) и Арагон (Aragon) в 1996 г.
== Операция merge Операции в декартовом дереве ===== split ===[[file:split.png|thumb|400px|Операция split]]
А тут Операция <tex>\mathrm{split}</tex> (''разрезать'') позволяет сделать следующее: разрезать исходное дерево <tex>T</tex> по ключу <tex>k</tex>. Возвращать она будет mergeтакую пару деревьев <tex>\langle T_1, T_2\rangle </tex>, что в дереве <tex>T_1</tex> ключи меньше <tex>k</tex>, а в дереве <tex>T_2</tex> все остальные: <tex>\mathrm{split}(T, k) \to \langle T_1, T_2\rangle </tex>.
== Операция add==Операция <tex>add(T, k)</tex> добавляет в дерево <tex>T</tex> элемент <tex>k</tex>, где <tex>k.x</tex> - ключ, а <tex>k.y</tex>- приоритетЭта операция устроена следующим образом.
===Реализация №1:===<p>1) Разбиваем наше Рассмотрим случай, в котором требуется разрезать дерево по ключу, который мы хотим добавитьбольшему ключа корня.Посмотрим, то есть как будут устроены результирующие деревья <tex>split(T, T_1, </tex> и <tex>T_2, k.x)</tex>.:* <tex>T_1</ptex>: левое поддерево <tex>T_1<p/tex>2) Сливаем первое дерево совпадёт с новым элементом, то есть левым поддеревом <tex>T</tex>. Для нахождения правого поддерева <tex>merge(T_1</tex>, T_1, k)нужно разрезать правое поддерево <tex>T</tex> на <tex>T^R_1</tex>.и <tex>T^R_2</ptex>по ключу <tex>k<p/tex>3) Сливаем получившиеся дерево со вторым, то есть и взять <tex>merge(T, T_1, ^R_1</tex>.* <tex>T_2)</tex>. совпадёт с <tex>T^R_2</ptex>.
Случай, в котором требуется разрезать дерево по ключу, меньше либо равному ключа в корне, рассматривается симметрично.
=== Реализация №2: Псевдокод ===Сначала спускаемся по дереву (как в обычном бинарном дереве поиска по <tex>k.x</tex>), но останавливаемся на первом элементе, в котором значение приоритета оказалось меньше <tex>k.y</tex>. Мы нашли позицию, куда будем вставлять наш элемент. Теперь вызываем <tex>split(T, T_1, T_2, k.x)</tex> от найденного элемента (от элемента вместе со всем его поддеревом), и возвращаемые ею <tex>T_1</tex> и <tex>T_2</tex> записываем в качестве левого и правого сына добавляемого элемента.
'''<tex>\langle</tex>Treap, Treap<tex>\rangle</tex>''' split(t: '''Treap''', k: '''int'''):
'''if''' t == <tex> \varnothing </tex>
'''return''' <tex>\langle</tex><tex> \varnothing </tex>, <tex> \varnothing </tex><tex>\rangle</tex>
'''else if''' k > t.x
<tex>\langle</tex>t1, t2<tex>\rangle</tex> = split(t.right, k)
t.right = t1
'''return''' <tex>\langle</tex>t, t2<tex>\rangle</tex>
'''else'''
<tex>\langle</tex>t1, t2<tex>\rangle</tex> = split(t.left, k)
t.left = t2
'''return''' <tex>\langle</tex>t1, t<tex>\rangle</tex>
== Операция remove = Время работы ===Операция <tex>remove(T, x)</tex> удаляет из дерева <tex>T</tex> элемент <tex>x</tex>.
===Реализация №1:===<p>1) Разбиваем наше дерево по ключу, который мы хотим удалить, то есть Оценим время работы операции <tex>\mathrm{split(T, T_1, T_2, x)}</tex>.</p><p>2) Теперь отделяем от второго дерева элемент Во время выполнения вызывается одна операция <tex>k\mathrm{split}</tex>, опять таки разбивая по ключу длядерева хотя бы на один меньшей высоты и делается ещё <tex>kO(1)</tex>, то есть операций. Тогда итоговая трудоёмкость этой операцииравна <tex>splitO(T_2, T_2, T_3, xh)</tex>.</p><p>3) Сливаем первое дерево со третьим, то есть где <tex>merge(T, T_1, T_3)h</tex>{{---}} высота дерева. </p>
===merge ===[[file:merge.png|thumb|400px|Операция merge]] Рассмотрим вторую операцию с декартовыми деревьями {{---}} <tex>\mathrm{merge}</tex> (''слить'').  С помощью этой операции можно слить два декартовых дерева в одно.Причём, все ключи в первом(''левом'') дереве должны быть меньше, чемключи во втором(''правом''). В результате получается дерево, в котором есть все ключи из первого и второго деревьев: <tex>\mathrm{merge}(T_1, T_2) \to \{T\}</tex> Рассмотрим принцип работы этой операции. Пусть нужно слить деревья <tex>T_1</tex> и <tex>T_2</tex>.Тогда, очевидно, у результирующего дерева <tex>T</tex> есть корень. Корнем станет вершина из <tex>T_1</tex> или <tex>T_2</tex> с наибольшим приоритетом <tex>y</tex>. Но вершина с самым большим <tex>y</tex> из всех вершин деревьев <tex>T_1</tex> и <tex>T_2</tex> может быть только либо корнем <tex>T_1</tex>, либо корнем <tex>T_2</tex>.Рассмотрим случай, в котором корень <tex>T_1</tex> имеет больший <tex>y</tex>, чем корень <tex>T_2</tex>.Случай, в котором корень <tex>T_2</tex> имеет больший <tex>y</tex>, чем корень <tex>T_1</tex>, симметричен этому. Если <tex>y</tex> корня <tex>T_1</tex> больше <tex>y</tex> корня <tex>T_2</tex>, то он и будет являться корнем. Тогда левое поддерево <tex>T</tex> совпадёт с левым поддеревом <tex>T_1</tex>. Справа же нужно подвесить объединение правого поддерева<tex>T_1</tex> и дерева <tex>T_2</tex>. === Псевдокод ===  '''Treap''' merge(t1: '''Treap''', t2: '''Treap'''): '''if''' t2 == <tex> \varnothing </tex> '''return''' t1 '''if''' t1 == <tex> \varnothing </tex> '''return''' t2 '''else if''' t1.y > t2.y t1.right = merge(t1.right, t2) '''return''' t1 '''else''' t2.left = merge(t1, t2.left) '''return''' t2 === Время работы === Рассуждая аналогично операции <tex>\mathrm{split}</tex>, приходим к выводу, что трудоёмкость операции <tex>\mathrm{merge}</tex> равна <tex>O(h)</tex>, где <tex>h</tex> {{---}} высота дерева. === insert ===Операция <tex>\mathrm{insert}(T, k)</tex> добавляет в дерево <tex>T</tex> элемент <tex>k</tex>, где <tex>k.x</tex> {{---}} ключ, а <tex>k.y</tex> {{---}} приоритет. Представим что элемент <tex>k</tex>, это декартово дерево из одного элемента, и для того чтобы его добавить в наше декартово дерево <tex>T</tex>, очевидно, нам нужно их слить. Но <tex>T</tex> может содержать ключи как меньше, так и больше ключа <tex>k.x</tex>, поэтому сначала нужно разрезать <tex>T</tex> по ключу <tex>k.x</tex>. * Реализация №1 # Разобьём наше дерево по ключу, который мы хотим добавить, то есть <tex>\mathrm{split}(T, k.x) \to \langle T_1, T_2\rangle</tex>.# Сливаем первое дерево с новым элементом, то есть <tex>\mathrm{merge}(T_1, k) \to T_1</tex>.# Сливаем получившиеся дерево со вторым, то есть <tex>\mathrm{merge}(T_1, T_2) \to T</tex>. * Реализация №2: # Сначала спускаемся по дереву (как в обычном бинарном дереве поиска по <tex>k.x</tex>), но останавливаемся на первом элементе, в котором значение приоритета оказалось меньше <tex>k.y</tex>.# Теперь вызываем <tex>\mathrm{split}(T, k.x) \to \langle T_1, T_2\rangle</tex> от найденного элемента (от элемента вместе со всем его поддеревом) # Полученные <tex>T_1</tex> и <tex>T_2</tex> записываем в качестве левого и правого сына добавляемого элемента.# Полученное дерево ставим на место элемента, найденного в первом пункте. В первой реализации два раза используется <tex>\mathrm{merge}</tex>, а во второй реализации слияние вообще не используется. === remove ===Операция <tex>\mathrm{remove}(T, x)</tex> удаляет из дерева <tex>T</tex> элемент с ключом <tex>x</tex>. * Реализация №1 # Разобьём наше дерево по ключу, который мы хотим удалить, то есть <tex>\mathrm{split }(T, k.x) \to \langle T_1, T_2\rangle</tex>.# Теперь отделяем от первого дерева элемент <tex>x</tex>, то есть самого левого ребёнка дерева <tex> T_2 </tex>.# Сливаем первое дерево со вторым, то есть <tex>\mathrm{merge }(T_1, T_2) \to T</tex>.  * Реализация №2# Спускаемся по дереву (как в обычном бинарном дереве поиска по <tex>k.x</tex>), ища и ищем удаляемый элемент. # Найдя элемент, мы просто вызываем <tex>\mathrm{merge}</tex> от его левого и правого сыновей, и возвращаемое ею значение # Результат процедуры <tex>\mathrm{merge}</tex> ставим на место удаляемого элемента. В первой реализации один раз используется <tex>\mathrm{split}</tex>, а во второй реализации разрезание вообще не используется. == Построение декартова дерева ==Пусть нам известно из каких пар <tex>(x_i, y_i)</tex> требуется построить декартово дерево, причём также известно, что <tex>x_1 < x_2 < \ldots < x_n</tex>.=== Алгоритм за <tex>O(n\log n)</tex> ===Отсортируем все приоритеты по убыванию за <tex> O(n\log n) </tex> и выберем первый из них, пусть это будет <tex>y_k</tex>. Сделаем <tex>(x_k, y_k)</tex> корнем дерева. Проделав то же самое с остальными вершинами получим левого и правого сына <tex>(x_k, y_k)</tex>. В среднем высота Декартова дерева <tex>\log n</tex> (см. далее) и на каждом уровне мы сделали <tex>O(n)</tex> операций. Значит такой алгоритм работает за <tex>O(n\log n)</tex>.  === Другой алгоритм за <tex>O(n\log n)</tex> ===Отсортируем пары <tex>(x_i, y_i)</tex> по убыванию <tex>x_i</tex> и положим их в очередь. Сперва достанем из очереди первые <tex>2</tex> элемента и сольём их в дерево и положим в конец очереди, затем сделаем то же самое со следующими двумя и т.д. Таким образом, мы сольём сначала <tex>n</tex> деревьев размера <tex>1</tex>, затем <tex>\dfrac{n}{2}</tex> деревьев размера <tex>2</tex> и так далее. При этом на уменьшение размера очереди в два раза мы будем тратить суммарно <tex>O(n)</tex> время на слияния, а всего таких уменьшений будет <tex>\log n</tex>. Значит полное время работы алгоритма будет <tex>O(n\log n)</tex>. === Алгоритм за <tex>O(n)</tex> ===Будем строить дерево слева направо, то есть начиная с <tex>(x_1, y_1)</tex> по <tex>(x_n, y_n)</tex>, при этом помнить последний добавленный элемент <tex>(x_k, y_k)</tex>. Он будет самым правым, так как у него будет максимальный ключ, а по ключам декартово дерево представляет собой [[Дерево поиска, наивная реализация|двоичное дерево поиска]]. При добавлении <tex>(x_{k+1}, y_{k+1})</tex>, пытаемся сделать его правым сыном <tex>(x_k, y_k)</tex>, это следует сделать если <tex>y_k > y_{k+1}</tex>, иначе делаем шаг к предку последнего элемента и смотрим его значение <tex>y</tex>. Поднимаемся до тех пор, пока приоритет в рассматриваемом элементе меньше приоритета в добавляемом, после чего делаем <tex>(x_{k+1}, y_{k+1})</tex> его правым сыном, а предыдущего правого сына делаем левым сыном <tex>(x_{k+1}, y_{k+1})</tex>.  Заметим, что каждую вершину мы посетим максимум дважды: при непосредственном добавлении и, поднимаясь вверх (ведь после этого вершина будет лежать в чьём-то левом поддереве, а мы поднимаемся только по правому). Из этого следует, что построение происходит за <tex>O(n)</tex>. == Случайные приоритеты ==Мы уже выяснили, что сложность операций с декартовым деревом линейно зависит от его высоты. В действительности высота декартова дерева может быть линейной относительно его размеров. Например, высота декартова дерева, построенного по набору ключей <tex>(1, 1), \ldots, (n, n)</tex>, будет равна <tex>n</tex>. Во избежание таких случаев, полезным оказывается выбирать приоритеты в ключах случайно. == Высота в декартовом дереве с случайными приоритетами =={{Теорема|statement = В декартовом дереве из <tex>n</tex> узлов, приоритеты <tex>y</tex> которого являются [[Дискретная случайная величина|случайными величинами]] c равномерным распределением, средняя глубина вершины <tex>O(\log n)</tex>.|proof= Будем считать, что все выбранные приоритеты <tex>y</tex> попарно различны. Для начала введём несколько обозначений:* <tex>x_k</tex> {{---}} вершина с <tex>k</tex>-ым по величине ключом;* индикаторная величина <tex>A_{i, j} = \left\{\begin{array}{lllc} 1 ,&& x_i\ \text{is ancestor of} \ x_j\\ 0 ,&& \text{otherwise}\\\end{array}\right.</tex>* <tex>d(v)</tex> {{---}} глубина вершины <tex>v</tex>; В силу обозначений глубину вершины можно записать как количество предков::<tex>d(x_k) = \sum\limits_{i = 1}^{n} A_{i,k} </tex>. Теперь можно выразить [[Математическое ожидание случайной величины|математическое ожидание]] глубины конкретной вершины::<tex>E(d(x_k)) = \sum\limits_{i = 1}^{n} Pr[A_{i,k} = 1] </tex> {{---}} здесь мы использовали линейность математического ожидания, и то что <tex>E(X) = Pr[X = 1]</tex> для индикаторной величины <tex>X</tex> (<tex>Pr[A]</tex> {{---}} вероятность события <tex>A</tex>).Для подсчёта средней глубины вершин нам нужно сосчитать вероятность того, что вершина <tex>x_i</tex> является предком вершины <tex>x_k</tex>, то есть <tex>Pr[A_{i,k} = 1]</tex>. Введём новое обозначение:* <tex>X_{i, k}</tex> {{---}} множество ключей <tex>\{x_i, \ldots, x_k\}</tex> или <tex>\{x_k, \ldots, x_i\}</tex>, в зависимости от <tex>i < k</tex> или <tex>i > k</tex>. <tex>X_{i, k}</tex> и <tex>X_{k, i}</tex> обозначают одно и тоже, их мощность равна <tex>|k - i| + 1</tex>.  {{Лемма|statement=Для любых <tex>i \ne k</tex> , <tex>x_i</tex> является предком <tex>x_k</tex> тогда и только тогда, когда <tex>x_i</tex> имеет наибольший приоритет среди <tex>X_{i, k}</tex>.|proof=Если <tex>x_i</tex> является корнем, то оно является предком <tex>x_k</tex> и по определению имеет максимальный приоритет среди всех вершин, следовательно, и среди <tex>X_{i, k}</tex>. С другой стороны, если <tex>x_k</tex> {{---}} корень, то <tex>x_i</tex> {{---}} не предок <tex>x_k</tex>, и <tex>x_k</tex> имеет максимальный приоритет в декартовом дереве; следовательно, <tex>x_i</tex> не имеет наибольший приоритет среди <tex>X_{i, k}</tex>. Теперь предположим, что какая-то другая вершина <tex>x_m</tex> {{---}} корень. Тогда, если <tex>x_i</tex> и <tex>x_k</tex> лежат в разных поддеревьях, то <tex>i < m < k</tex> или <tex>i > m > k</tex>, следовательно, <tex>x_m</tex> содержится в <tex>X_{i , k}</tex>. В этом случае <tex>x_i</tex> {{---}} не предок <tex>x_k</tex>, и наибольший приоритет среди <tex>X_{i, k}</tex> имеет вершина с номером <tex>m</tex>. Наконец, если <tex>x_i</tex> и <tex>x_k</tex> лежат в одном поддереве, то доказательство применяется по индукции: пустое декартово дерево есть тривиальная база, а рассматриваемое поддерево является меньшим декартовым деревом. }} Так как распределение приоритетов равномерное, каждая вершина среди <tex>X_{i, k}</tex> может иметь максимальный приоритет, мы немедленно приходим к следующему равенству: : <tex>Pr[A_{i, k} = 1] = \left\{\begin{array}{lllc} \dfrac{1}{k - i + 1} ,&& k \ > \ i\\ 0 ,&& k\ =\ i\\\dfrac{1}{i - k + 1} ,&& k \ < \ i\\\end{array}\right.</tex> Подставив последнее в нашу формулу с математическим ожиданием получим: :<tex>E(d(x_k)) = \sum\limits_{i = 1}^{n} Pr[A_{i,k} = 1] = \sum\limits_{i = 1}^{k - 1}\dfrac{1}{k - i + 1} + \sum\limits_{i = k + 1}^{n}\dfrac{1}{i - k + 1} \leqslant </tex><tex>\leqslant \ln(k) + \ln(n - k)+2</tex> (здесь мы использовали неравенство <tex>\sum\limits_{i = 1}^{n} \dfrac{1}{i} \leqslant \ln(n) + 1</tex>): <tex>\log(n)</tex> отличается от <tex>\ln(n)</tex> в константу раз, поэтому <tex>\log(n) = O(\ln(n))</tex>. В итоге мы получили что <tex>E(d(x_k)) = O(\log(n))</tex>.}} Таким образом, среднее время работы операций <tex>\mathrm{split}</tex> и <tex>\mathrm{merge}</tex> будет <tex>O(\log(n))</tex>. == См. также ==* [[Декартово дерево по неявному ключу]] == Источники информации ==*[http://ru.wikipedia.org/wiki/Декартово_дерево Декартово дерево — Википедия]*[http://rain.ifmo.ru/cat/data/theory/trees/treaps-2006/article.pdf Treaps и T-Treaps] [[Категория:Дискретная математика и алгоритмы]][[Категория:Деревья поиска]]
1632
правки

Навигация