Мастер-теорема — различия между версиями
Timur (обсуждение | вклад) |
м (rollbackEdits.php mass rollback) |
||
(не показано 14 промежуточных версий 5 участников) | |||
Строка 24: | Строка 24: | ||
# Если <tex>c < \log_b a</tex>, то <tex>T(n) = O\left( n^{\log_b a} \right)</tex> | # Если <tex>c < \log_b a</tex>, то <tex>T(n) = O\left( n^{\log_b a} \right)</tex> | ||
− | |proof= Рассмотрим дерево рекурсии. Всего в нем будет <tex>\log_b n</tex> уровней. На каждом таком уровне, количество детей в дереве будет умножаться на <tex>a</tex>, так на уровне <tex>i</tex> будет <tex>a^i</tex> детей. Также известно, что каждый ребенок на уровне <tex>i</tex> размера <tex>\dfrac{n}{b^i}</tex>. Ребенок размера <tex>\left(\dfrac{n}{b^i}\right)</tex> требует <tex>\left(\dfrac{n}{b^i}\right) ^ c</tex> дополнительных затрат, поэтому общее количество совершенных действий на уровне <tex>i</tex> : | + | |proof= Рассмотрим дерево рекурсии данного соотношения. Всего в нем будет <tex>\log_b n</tex> уровней. На каждом таком уровне, количество детей в дереве будет умножаться на <tex>a</tex>, так на уровне <tex>i</tex> будет <tex>a^i</tex> детей. Также известно, что каждый ребенок на уровне <tex>i</tex> размера <tex>\dfrac{n}{b^i}</tex>. Ребенок размера <tex>\left(\dfrac{n}{b^i}\right)</tex> требует <tex>O\left(\left(\dfrac{n}{b^i}\right) ^ c\right)</tex> дополнительных затрат, поэтому общее количество совершенных действий на уровне <tex>i</tex> : |
− | <tex> a^i\left(\dfrac{n}{b^i}\right)^c = n^c\left(\dfrac{a^i}{b^{ic}}\right) = n^c\left(\dfrac{a}{b^c}\right)^i</tex> | + | <tex> O\left(a^i\left(\dfrac{n}{b^i}\right)^c\right) = O\left (n^c\left(\dfrac{a^i}{b^{ic}}\right)\right) = O\left (n^c\left(\dfrac{a}{b^c}\right)^i\right)</tex> |
Заметим, что количество операций увеличивается, уменьшается и остается константой, если <tex>\left(\dfrac{a}{b^c}\right)^i</tex> увеличивается, уменьшается или остается константой соответственно. | Заметим, что количество операций увеличивается, уменьшается и остается константой, если <tex>\left(\dfrac{a}{b^c}\right)^i</tex> увеличивается, уменьшается или остается константой соответственно. | ||
− | Поэтому решение разбивается на три случая, когда <tex> | + | Поэтому решение разбивается на три случая, когда <tex>\dfrac{a}{b^c}</tex> больше <tex>1</tex>, равна <math>1</math> или меньше <math>1</math>. Рассмотрим <tex dpi = "130">\dfrac{a}{b^c}\ = 1\Leftrightarrow a = b^c \Leftrightarrow\ \log_b a = c \log_b b \Leftrightarrow\ \log_b a = c</tex>. |
Распишем всю работу в течение рекурсивного спуска: | Распишем всю работу в течение рекурсивного спуска: | ||
− | <tex dpi = "130"> \displaystyle\sum_{i=0}^{\log_b n}n^c\left(\frac{a}{b^c} + O(1) | + | <tex dpi = "130">T(n) = \displaystyle\sum_{i=0}^{\log_b n}O\left(n^c\cdot\left(\frac{a}{b^c}\right)^i\right) + O(1)= O\left(n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}\left(\frac{a}{b^c}\right)^i\right)</tex> |
Откуда получаем: | Откуда получаем: | ||
Строка 37: | Строка 37: | ||
#<tex>c > \log_b a </tex> <tex>\Rightarrow</tex> <tex>T(n) = O\left( n^{c} \right)</tex> (так как <tex dpi = "130"> \left(\dfrac{a}{b^c}\right)^i</tex> убывающая геометрическая прогрессия) | #<tex>c > \log_b a </tex> <tex>\Rightarrow</tex> <tex>T(n) = O\left( n^{c} \right)</tex> (так как <tex dpi = "130"> \left(\dfrac{a}{b^c}\right)^i</tex> убывающая геометрическая прогрессия) | ||
#<tex>c = \log_b a </tex> <tex>\Rightarrow</tex> <tex dpi = "130"> T(n) = \displaystyle\sum_{i=0}^{\log_b n}n^c\cdot\left(\frac{a}{b^c}\right)^i = </tex> <tex dpi = "130> n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}\left(\frac{a}{b^c}\right)^i = n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}1^i = n^c + n^c\log_b n = O\left( n^{c} \log n \right) </tex> | #<tex>c = \log_b a </tex> <tex>\Rightarrow</tex> <tex dpi = "130"> T(n) = \displaystyle\sum_{i=0}^{\log_b n}n^c\cdot\left(\frac{a}{b^c}\right)^i = </tex> <tex dpi = "130> n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}\left(\frac{a}{b^c}\right)^i = n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}1^i = n^c + n^c\log_b n = O\left( n^{c} \log n \right) </tex> | ||
− | #<tex>c < \log_b a </tex> <tex>\Rightarrow</tex> <tex dpi = "125"> T(n) = \displaystyle\sum_{i=0}^{\log_b n}n^c\cdot\left(\frac{a}{b^c}\right)^i = n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}\left(\dfrac{a}{b^c}\right)^i = O\left(n^c\cdot\left(\dfrac{a}{b^c}\right)^{\log_b n}\right)</tex>, но | + | #<tex>c < \log_b a </tex> <tex>\Rightarrow</tex> <tex dpi = "125"> T(n) = \displaystyle\sum_{i=0}^{\log_b n}n^c\cdot\left(\frac{a}{b^c}\right)^i = n^c\cdot\displaystyle\sum_{i=0}^{\log_b n}\left(\dfrac{a}{b^c}\right)^i = O\left(n^c\cdot\left(\dfrac{a}{b^c}\right)^{\log_b n}\right)</tex>, но <tex dpi = "130"> n^c\cdot\left(\dfrac{a}{b^c}\right)^{\log_b n} </tex> <tex dpi = "130"> = </tex> <tex dpi = "130"> n^c\cdot\left(\dfrac{a^{\log_b n} }{(b^c)^{\log_b n}}\right) </tex> <tex dpi = "130"> = </tex> <tex dpi = "130"> n^c\cdot\left(\dfrac{n^{\log_b a}}{n^c}\right)</tex> <tex dpi = "130"> = </tex> <tex dpi = "130"> n^{\log_b a} \Rightarrow T(n) = O\left(n^{\log_b a}\right)</tex> |
}} | }} | ||
− | Мастер-теорема имеет прямое отношение к анализу алгоритмов, так как рекуррентное соотношение можно воспринимать | + | Мастер-теорема имеет прямое отношение к анализу алгоритмов, так как рекуррентное соотношение можно воспринимать следующим образом: имеется задача размера <tex> n </tex>, алгоритм разбивает её на <tex> a </tex> подзадач размера <tex> \dfrac{n}{b} </tex> , тратит дополнительно <tex> O(n^c) </tex> действий, а если размер подзадачи становится равен единице, то алгоритму требуется <tex>O(1)</tex> действий на её решение. |
+ | |||
+ | Из доказательства теоремы видно, что если в рекурретном соотношении заменить <tex> O </tex> на <tex> \Theta </tex> и <tex> \Omega </tex>, то и асимптотика решения изменится соответствующим образом на <tex> \Theta </tex> или <tex> \Omega </tex>. | ||
==Примеры== | ==Примеры== | ||
Строка 49: | Строка 51: | ||
− | <tex> t( | + | <tex> t(n) = \begin{cases} |
− | 2 \; t\!\left(\dfrac{ | + | 2 \; t\!\left(\dfrac{n}{2}\right) + O(n\log n) , & n > 1\\ |
1 , & n = 1 | 1 , & n = 1 | ||
\end{cases} | \end{cases} | ||
</tex> | </tex> | ||
− | Заметим, что <tex> n\log n = O(n^c) </tex>, для любого <tex> c > 1 </tex>, что удовлетворяет 1 условию. Тогда <tex> T(n) = O(n^c) </tex>, где <tex> c > 1 </tex> | + | Заметим, что <tex> n\log n = O(n^c) </tex>, для любого <tex> c > 1 </tex>, что удовлетворяет 1 условию. Тогда <tex> T(n) = O(n^c) </tex>, где <tex> c > 1 </tex>, при <tex> a = 2, b = 2, \log_b a = 1</tex> |
==== Пример 2 ==== | ==== Пример 2 ==== | ||
Строка 75: | Строка 77: | ||
Рассмотрим пару соотношений, которые нельзя решить мастер-теоремой: | Рассмотрим пару соотношений, которые нельзя решить мастер-теоремой: | ||
*<tex dpi = "130">T(n) = 2^nT\left (\dfrac{n}{2}\right )+O(n^n)</tex> | *<tex dpi = "130">T(n) = 2^nT\left (\dfrac{n}{2}\right )+O(n^n)</tex> | ||
− | *:<tex>a</tex> не является константой; количество подзадач может меняться | + | *:<tex>a</tex> не является константой; количество подзадач может меняться, |
− | *<tex dpi = "130">T(n) = 2T\left (\dfrac{n}{2}\right )+O\left(\ | + | *<tex dpi = "130">T(n) = 2T\left (\dfrac{n}{2}\right )+O\left(\dfrac{n}{\log n}\right)</tex> |
− | *:рассмотрим <tex> f(n) = \dfrac{n}{\log n} </tex> , тогда не существует такого <tex> O(n^c) </tex>, что <tex> f(n) \in O(n^c) </tex> , | + | *:рассмотрим <tex> f(n) = \dfrac{n}{\log n} </tex> , тогда не существует такого <tex> O(n^c) </tex>, что <tex> f(n) \in O(n^c) </tex>, так как при <tex> n = 1 , f(n) \rightarrow \!\, \infty </tex>, а <tex> O(n^c) </tex> ограничено, |
*<tex dpi = "130">T(n) = 0.5T\left (\dfrac{n}{2}\right )+O(n)</tex> | *<tex dpi = "130">T(n) = 0.5T\left (\dfrac{n}{2}\right )+O(n)</tex> | ||
− | *:<tex>a < 1</tex> | + | *:<tex>|a| < 1</tex>, однако пример можно решить следующим образом: заметим, что на <tex> i </tex> шаге, размер <tex> T(i) \leqslant \dfrac{c \cdot n}{4^i} </tex> , тогда, оценивая сумму, получаем, что <tex> T(n) = O(n) </tex>, |
+ | *<tex dpi = "130">T(n) = -2T\left (\dfrac{n}{3}\right )+O(n^2)</tex> | ||
+ | *:<tex> a < 0 </tex>, при составлении асимптотического решения перед <tex> O </tex> каждый раз будет новый знак, что противоречит мастер-теореме. | ||
+ | |||
=== Приложение к известным алгоритмам === | === Приложение к известным алгоритмам === | ||
{| class="wikitable" | {| class="wikitable" |
Текущая версия на 19:37, 4 сентября 2022
Мастер теорема (англ. Master theorem) позволяет найти асимптотическое решение рекуррентных соотношений, которые могут возникнуть в анализе асимптотики многих алгоритмов. Однако не все рекуррентные соотношения могут быть решены через мастер теорему, ее обобщения включаются в метод Акра-Бацци[1].
Содержание
Формулировка и доказательство мастер-теоремы
Теорема (мастер-теорема): |
Пусть имеется рекуррентное соотношения:
где , , , .Тогда асимптотическое решение имеет вид:
|
Доказательство: |
Рассмотрим дерево рекурсии данного соотношения. Всего в нем будет уровней. На каждом таком уровне, количество детей в дереве будет умножаться на , так на уровне будет детей. Также известно, что каждый ребенок на уровне размера . Ребенок размера требует дополнительных затрат, поэтому общее количество совершенных действий на уровне : Заметим, что количество операций увеличивается, уменьшается и остается константой, если увеличивается, уменьшается или остается константой соответственно.Поэтому решение разбивается на три случая, когда больше , равна или меньше . Рассмотрим .Распишем всю работу в течение рекурсивного спуска: Откуда получаем:
|
Мастер-теорема имеет прямое отношение к анализу алгоритмов, так как рекуррентное соотношение можно воспринимать следующим образом: имеется задача размера
, алгоритм разбивает её на подзадач размера , тратит дополнительно действий, а если размер подзадачи становится равен единице, то алгоритму требуется действий на её решение.Из доказательства теоремы видно, что если в рекурретном соотношении заменить
на и , то и асимптотика решения изменится соответствующим образом на или .Примеры
Примеры задач
Пример 1
Пусть задано такое рекуррентное соотношение:
Заметим, что
, для любого , что удовлетворяет 1 условию. Тогда , где , приПример 2
Задано такое соотношение:
Данное соотношение подходит под первый случай
, поэтому его асимптотика совпадает с асимптотикой .Недопустимые соотношения
Рассмотрим пару соотношений, которые нельзя решить мастер-теоремой:
- не является константой; количество подзадач может меняться,
- рассмотрим , тогда не существует такого , что , так как при , а ограничено,
- , однако пример можно решить следующим образом: заметим, что на шаге, размер , тогда, оценивая сумму, получаем, что ,
- , при составлении асимптотического решения перед каждый раз будет новый знак, что противоречит мастер-теореме.
Приложение к известным алгоритмам
Алгоритм | Рекуррентное соотношение | Время работы | Комментарий |
---|---|---|---|
Целочисленный двоичный поиск | По мастер-теореме | , где||
Обход бинарного дерева | По мастер-теореме | , где||
Сортировка слиянием | По мастер-теореме | , где
См.также
Примечания
Источники информации
- Википедия — Мастер-теорема
- Dartmouth university — The master theorem
- Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание.стр. 110 М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4