Критерий Тарьяна минимальности остовного дерева — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Критерий Тарьяна)
м (rollbackEdits.php mass rollback)
 
(не показано 12 промежуточных версий 3 участников)
Строка 8: Строка 8:
 
<tex> \Rightarrow </tex>  
 
<tex> \Rightarrow </tex>  
  
Пусть дано остовное дерево <tex> A </tex>, состоящее из ребер наименьшего веса на циклах. Докажем, что такое дерево минимально.
+
Докажем, что остовное дерево, состоящее из ребер наименьшего веса на циклах {{---}}  минимально.
  
Предположим противное: в дереве <tex> A </tex> не все минимальные ребра на циклах. Тогда, найдется цикл, в котором есть ребро <tex> (u, v) \notin A</tex>, которое легче остальных ребер этого цикла, включая ребро <tex> (a, b) \in A</tex>. Следовательно, можно получить остов с меньшим весом, удалив ребро <tex> (a, b) </tex>, и, добавив <tex> (u, v) </tex>. Поэтому, дерево содержащее ребра не наименьшего веса на циклах не минимально {{---}} противоречие.
+
Предположим противное: пусть остовное дерево <tex> A </tex> состоит из всех минимальных ребер на циклах, тогда оно не минимально.  
 +
 
 +
Если <tex> A </tex> не минимально, то его можно улучшить, значит есть ребро, которое имеет наименьший вес на цикле и не принадлежит дереву. Следовательно, дерево построено не на минимальных ребрах в циклах {{---}} противоречие.
  
 
<tex> \Leftarrow </tex>
 
<tex> \Leftarrow </tex>
Строка 27: Строка 29:
 
Теперь, рассмотрим какой-нибудь разрез <tex> (S, T) </tex> уже построенного дерева <tex> A </tex> и пересекающее ребро <tex> (u, v) </tex>, причем <tex> u \in S </tex>, а <tex> v \in T </tex>. Найдем путь в изначальном графе <tex> G </tex>, соединяющий вершины <tex> u </tex> и <tex> v </tex>. Так как они находятся в разных компонентах связности, то какое-нибудь ребро <tex> (a, b) \notin A</tex> тоже будет пересекать разрез <tex> (S, T) </tex>. Очевидно, что <tex> w(u, v) \leqslant  w(a, b) </tex>, так как первое {{---}} безопасное ребро.  
 
Теперь, рассмотрим какой-нибудь разрез <tex> (S, T) </tex> уже построенного дерева <tex> A </tex> и пересекающее ребро <tex> (u, v) </tex>, причем <tex> u \in S </tex>, а <tex> v \in T </tex>. Найдем путь в изначальном графе <tex> G </tex>, соединяющий вершины <tex> u </tex> и <tex> v </tex>. Так как они находятся в разных компонентах связности, то какое-нибудь ребро <tex> (a, b) \notin A</tex> тоже будет пересекать разрез <tex> (S, T) </tex>. Очевидно, что <tex> w(u, v) \leqslant  w(a, b) </tex>, так как первое {{---}} безопасное ребро.  
  
Следовательно, любое ребро <tex> \notin A</tex> не легче ребер <tex> \in A </tex> на этом цикле.
+
Следовательно, любое ребро не принадлежащее <tex> A</tex> не легче ребер принадлежащих <tex> A </tex> на этом цикле.
  
  

Текущая версия на 19:39, 4 сентября 2022

Критерий Тарьяна

Теорема (критерий Тарьяна минимальности остовного дерева):
Остовное дерево минимально тогда и только тогда, когда для любого ребра, не принадлежащего остову, цикл, образуемый этим ребром при добавлении к остову, не содержит рёбер тяжелее этого ребра.
Доказательство:
[math]\triangleright[/math]

[math] \Rightarrow [/math]

Докажем, что остовное дерево, состоящее из ребер наименьшего веса на циклах — минимально.

Предположим противное: пусть остовное дерево [math] A [/math] состоит из всех минимальных ребер на циклах, тогда оно не минимально.

Если [math] A [/math] не минимально, то его можно улучшить, значит есть ребро, которое имеет наименьший вес на цикле и не принадлежит дереву. Следовательно, дерево построено не на минимальных ребрах в циклах — противоречие.

[math] \Leftarrow [/math]

Построим минимальное остовное дерево [math] A [/math], с помощью общего алгоритма построения MST. Докажем, что оно имеет минимальные ребра на каждом цикле.

function Generic MST([math] G [/math]): 
   [math] A = \{ \} [/math]
   while [math] A [/math] не является остовом
      do найти безопасное ребро [math] ( u, v ) \in E [/math] для [math] A [/math] // нужное ребро находится с помощью леммы о безопасном ребре 
         [math] A = A \cup \{( u, v )\} [/math] 
return [math] A [/math]

Заметим, что дерево [math] A [/math] состоит полностью из безопасных ребер, так как на каждом шаге добавлялось безопасное ребро.

Теперь, рассмотрим какой-нибудь разрез [math] (S, T) [/math] уже построенного дерева [math] A [/math] и пересекающее ребро [math] (u, v) [/math], причем [math] u \in S [/math], а [math] v \in T [/math]. Найдем путь в изначальном графе [math] G [/math], соединяющий вершины [math] u [/math] и [math] v [/math]. Так как они находятся в разных компонентах связности, то какое-нибудь ребро [math] (a, b) \notin A[/math] тоже будет пересекать разрез [math] (S, T) [/math]. Очевидно, что [math] w(u, v) \leqslant w(a, b) [/math], так как первое — безопасное ребро.

Следовательно, любое ребро не принадлежащее [math] A[/math] не легче ребер принадлежащих [math] A [/math] на этом цикле.
[math]\triangleleft[/math]

Уникальность остовного дерева

Задача:
Поиск минимального остовного дерева и проверка его на уникальность.

Алгоритм решения

Построим минимальное остовное дерево используя алгоритм Краскала. Рассмотрим рёбра вне остова в любом порядке. Очередное обозначим [math]e = (u, v)[/math]. Рассмотрим максимальное ребро на пути [math]u[/math] и [math]v[/math] внутри остова:

  • Если его вес совпадает с весом ребра, то при добавлении ребра в остов, мы получим остов с циклом на котором несколько рёбер имеют одинаковый вес, значит мы можем удалить любое из них и остовное дерево будет всё ещё минимальным, это нарушает уникальность дерева. На этом алгоритм завершается и по критерию Тарьяна мы можем сказать, что в графе можно построить несколько остовных деревьев.
  • Если его вес больше ребра, то заменив ребро мы получим остов с большим весом, этот случай не влияет на уникальность.
  • Его вес не может быть меньше ребра из остова, иначе мы смогли бы построить минимальное остовное дерево с меньшим весом.

После рассмотрения всех рёбер, если мы не нашли ребро вне остова, при добавлении которого создаётся цикл с максимальным ребром таким же как и на пути [math]u[/math] и [math]v[/math], то в графе нету другого остовного дерева и наше дерево уникально. Искать максимальное ребро на пути [math]u[/math] и [math]v[/math] в дереве мы можем при помощи heavy-light декомпозиции.

Асимптотика

Построение минимального остовного дерева работает за [math]O(N \log N)[/math], нахождение максимального ребра за [math]O(\log N)[/math], максимальное количество рёбер вне остова не больше [math]N[/math], каждое ребро проверяется за [math]O(\log N)[/math]. Построение heavy-light декомпозиции работает за [math]O(N)[/math], остов мы построим один раз, heavy-light декомпозицию тоже один раз, каждое ребро мы не больше одного раза проверим на замену, сложность алгоритма [math]O(N \log N)[/math].

См.также

Источники информации

  • Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. — Алгоритмы. Построение и анализ.