1632
правки
Изменения
м
Пусть задано <tex>p</tex>-мерное пространство К примерам задач, решаемых с координатными осями <tex>x_1помощью многомерного дерева отрезков, также можно отнести задачи, x_2...x_p</tex>.Ткоторые решаются с помощью одномерного [[Дерево отрезков.к. при построении одномерного Построение|дереваотрезков]], только теперь в многомерном случае, а еще , индексы массива разбиваются на отрезкинапример, тогда задачу поиска числа точек в заданном прямоугольнике, которую иначе можно решать при построении многомерного дерева координаты будут обрабатываться сначала по <tex>x_1 </tex>помощи [[Перечисление точек в произвольном прямоугольнике за n * log ^(d - 1) n (range tree)|range tree]], затем по <tex>x_2</tex> и тдругие.д
==Пример двумерного дерева==Функция, вычисляющая ответ, должна работать следующим образом. На вход она принимает <tex>i</tex>-мерное дерево отрезков, которое соответствует рассматриваемой области (где <tex>i</tex> {{---}} количество координатных осей, которые не были рассмотрены), а также <tex>i</tex>-мерную область, для которой следует вычислить функцию. Вначале она находит <tex>i-1</tex>-мерные деревья отрезков, которые соответствуют отрезку по <tex>p-i+1</tex> координате, и рекурсивно запускается от них (если текущее дерево одномерное, то функция просто возвращает ответ из соответствующего листа). После этого считает итоговый результат, используя полученные после рекурсивных вызовов значения.
rollbackEdits.php mass rollback
[[Дерево отрезков можно обобщить в . Построение|Дерево отрезков]] естественным образом обобщается на двумерный и, вообще говоря, многомерный случай. Такая структура данных может вычислять значение некоторой [[Ассоциативная_операция|ассоциативной функции]] на гиперпрямоугольнике. Например, она позволяет решать следующую задачу.{{Задача|definition = Дан <tex>p</tex>-мерный массив, где индекс каждого измерения массива может принимать значения от <tex>1</tex> до <tex>n</tex>. Необходимо уметь изменять значение элемента массива, а также находить сумму на <tex>p</tex>-мерной области. }} Каждую из этих операций многомерное дерево отрезков выполняет за <tex>O(\log^{p} n)</tex>.
==Принцип работы==
[[Файл:SegmentTreeWorking.png|thumb|600px|right|Пример некоторой стадии работы алгоритма (поиск элементов, подходящих некоторой области)]]
<tex>n</tex>-мерное дерево отрезков {{---}} обычное дерево отрезков, элементами которого являются деревья отрезков размерности на единицу меньше. Основная идея заключается в рекурсивном переходе к деревьям меньшей размерности. Рассмотрим работу этого принципа на следующем примере. Пусть задано <tex>p</tex>-мерное пространство с координатными осями <tex>x_1, x_2, x_3 \ldots x_p</tex>. Необходимо найти значение некоторой ассоциативной функции на гиперпрямоугольнике.
Для того, чтобы определить, от каких именно деревьев отрезков следует запускаться рекурсивно, действовать необходимо так же, как и в одномерном случае. Т. е. если текущий отрезок не пересекается с необходимым, то возвращаем нейтральный элемент, если он полностью лежит в необходимом отрезке, то рекурсивно переходим к следующей координате, иначе разобьем текущий отрезок пополам, и рассмотри отдельно каждую из частей. На рисунке справа показан пример обработки очередной координаты (поиск соответствующих отрезку элементов {{---}} деревьев на <tex>1</tex> меньшей мерности). Таким образом, алгоритм совершит <tex>p</tex> вхождений в рекурсию, каждая итерация которой работает за <tex>O(\log n)</tex> и получим необходимую асимптотику. ==Хранение==Анализ [[Файл:SegmentTree2DExample.png|thumb|350px|right|Пример двумерного дерева отрезков для 16 элементов]]Пусть необходимо хранить дерево отрезков для <tex>p</tex>-мерной области, размеры которой <tex>n_1 \times n_2 \times \ldots \times n_p</tex>. Удобнее всего это делать с помощью <tex>p</tex>-мерного массива. Однако его размеры по каждой координате, так же как и в одномерном случае, должны превышать размеры соответствующего отрезка в 4 раза. На самом деле нам нужно хранить <tex>2n</tex> чисел, но, если мы хотим, чтобы правый и левый сын некоторой вершины <tex>i</tex> находились на <tex> 2i + 1</tex> и оценка структуры<tex>2i + 2</tex> месте, то, если длина отрезка не является степенью двойки, некоторые элементы массива могут быть не задействованы, поэтому в худшем случае, может понадобиться массив, размер которого в 4 раза превышает количество элементов. Т. е. потребуется массив размером <tex>4 n_1 \times 4 n_2 \times \ldots \times 4 n_p</tex>. Так двумерное дерево отрезков удобно хранить в виде массива, размером <tex>4N \times 4M</tex>. Каждая строчка такого массива соответствует некоторому отрезку по первой координате. Сама же строчка является деревом отрезков по второй координате. На рисунке справа показан пример дерева отрезков для суммы на массиве 4 на 4, заполненного числами от 1 от 16. Например, в элементе <tex>a[2][0] =100</tex> хранится сумма элементов, соответствующих отрезку <tex>[2..3]</tex> по первой координате и <tex>[0..3]</tex> по второй в исходном массиве. А в ячейке <tex>a[0][0] =136</tex> хранится сумма всех элементов.Структура использует Интересно, что если построить дерево вначале по второй координате, а потом по первой, то получившийся массив будет таким же. Т. е. данный двумерный массив можно рассматривать как массив деревьев отрезков, где каждое дерево соответствует некоторому отрезку по второй координате, а в нем хранятся суммы по первой. Заметим, что в общем случае для хранения <tex>O(np</tex>-мерного дерева отрезков требуется <tex>4^pn</tex> памяти, где <tex>n</tex> {{---}} общее количество элементов. ==Запрос==Рассмотрим отличия реализации многомерного и одномерного случаев. На самом деле, отличаются реализации только в двух местах. Во-первых, если рассматриваемый отрезок совпадает с необходимым, то в одномерном случае функция просто возвращает число, которое находится в текущем элементе массива. В многомерном случае, если рассматриваемая координата не последняя, следует вместо этого узнать значение, рекурсивно перейдя к следующей координате, и отвечает вернуть его. Еще один момент, в которых отличается реализация {{---}} передаваемые в функцию параметры. В многомерном случае кроме всего прочего следует также передать рассматриваемое <tex>p-i+1</tex>-мерное дерево (или кортеж из чисел, указывающих на запрос соответствующие элементы массива), а также область, которую следует рассматривать (или <tex>p-i+1</tex> пар чисел, обозначающих отрезки на соответствующих координатных осях). Все остальные детали реализации остаются такими же как и в одномерном дереве отрезков. В каждом нижеприведенном псевдокоде будут встречены обозначения:* индекс <tex>\mathtt{P}</tex> {{---}} размерность массива из условия задачи,* <tex>\mathtt{\odot}</tex> {{---}} та операция, которую мы считаем на данном многомерном дереве отрезков. В нижеприведенном псевдокоде будет встречен <tex>\varepsilon</tex> {{---}} нейтральный элемент. Псевдокод:<code> '''void''' query('''int''' area[], '''int''' x1, '''int''' x2, ..., '''int''' xP, '''int''' leftBorder, '''int''' rightBorder, '''int''' queryLeft, '''int''' queryRight, '''int''' node) '''if''' queryLeft > queryRight '''return''' <tex>\varepsilon</tex> '''if''' leftBorder == queryLeft '''and''' rightBorder == queryRight '''if''' последняя координата '''return''' t[x1][x2]...[xP][node] '''else''' '''return''' query(area[], x1, x2, ..., xP, node, 0, m - 1, area[P + 2].left, area[P + 2].right, 0) med = (leftBorder + rightBorder) / 2 '''return''' query(area[], x1, x2, ..., xP, leftBorder, med, queryLeft, min(queryRight, med), node * 2 + 1) <tex>\odot</tex> query(area[], x1, x2, ..., xP, med + 1, rightBorder, max(queryLeft, med + 1), queryRight, node * 2 + 2)</code> ==Обновление==Как и в одномерном случае, обновить в массиве необходимо не один элемент, а все, которые отвечают за области, в которых он присутствует. Таким образом, при обработке отрезка по некоторой координате (если она не последняя) следует выполнить следующие действия:* Если рассматриваемый отрезок содержит больше одного элемента, разобьем его на две части и рекурсивно перейдем в ту, где находится необходимый элемент* Перейдем к следующей координатеЗаметим, что "переходов к следующей координаты" при рассмотрении некоторой координатной оси будет совершено <tex>\log n</tex>, а итоговая сложность составит <tex>O(\log^{p} n)</tex>. Отдельно следует рассмотреть, что происходит, когда текущее дерево является одномерным (мы рассмотрели все координаты, кроме текущей):* Если рассматриваемый отрезок содержит больше одного элемента, разобьем его на две части и рекурсивно перейдем в ту, где находится необходимый элемент* Найдем первую координату, в которой рассматривается больше одного элемента. Обновим значение элемента массива с помощью уже вычисленных значений для разбитого надвое отрезка по этой координате.* Если мы рассматриваем область, состоящую из одного элемента, обновим значение массива. Псевдокод:<code> '''void''' update('''int''' newElem, '''int''' x1, '''int''' x2, ..., '''int''' xP, '''int''' x1Left, '''int''' x1Right, '''int''' x2Left, '''int''' x2Right, ..., '''int''' xPLeft, '''int''' xPRight, '''int''' leftBorder, '''int''' rightBorder, '''int''' node) '''if''' leftBorder != rightBorder med = (leftBorder + rightBorder) / 2 '''if''' med >= newElem.x(P+1) update(newElem, x1, x2, ..., xP, x1Left, x1Right, x2Left, x2Right, ..., xPLeft, xPRight, leftBorder, med, node * 2 + 1) '''else''' update(newElem, x1, x2, ..., xP, x1Left, x1Right, x2Left, x2Right, ..., xPLeft, xPRight, med + 1, rightBorder, node * 2 + 2) '''if''' последняя координата '''for''' I = 1..n '''if''' xILeft != xIRigth t[x1][x2]...[xP][node] = t[x1][x2]...[xI * 2 + 1]...[node] <tex>\odot</tex> t[x1][x2]...[xI * 2 + 2]...[node] '''return''' t[x1][x2]...[xP][node] = newElem.value '''else''' '''if''' leftBorder != rightBorder update(newElem, x1, x2, ..., xP, node, x1Left, x1Rigth, x2Left, x2Right, ..., leftBorder, rightBorder, 0, m - 1, 0)</code> ==Построение==Построение многомерного дерева отрезков практически ничем не отличается от его обновления. Единственное различие {{---}} если рассматриваемый отрезок состоит из более чем одного элемента, то необходимо рекурсивно вызываться из обеих частей. Псевдокод:<code> '''void''' build('''int''' x1, '''int''' x2, ..., '''int''' xP, '''int''' x1Left, '''int''' x1Right, '''int''' x2Left, '''int''' x2Right, ..., '''int''' xPLeft, '''int''' xPRight, '''int''' leftBorder, '''int''' rightBorder, '''int''' node) '''if''' leftBorder != rightBorder med = (leftBorder + rightBorder) / 2 update(newElem, x1, x2, ..., xP, x1Left, x1Right, x2Left, x2Right, ..., xPLeft, xPRight, leftBorder, med, node * 2 + 1) update(newElem, x1, x2, ..., xP, x1Left, x1Right, x2Left, x2Right, ..., xPLeft, xPRight, med + 1, rightBorder, node * 2 + 2) '''if''' последняя координата '''for''' I = 1..n '''if''' xILeft != xIRight t[x1][x2]...[xP][node] = t[x1][x2]...[xI * 2 + 1]...[node] <tex>p\odot</tex>t[x1][x2]...[xI * 2 + 2]...[node] '''return''' t[x1][x2]...[xP][node] = data[x1Left][x2Left]...[xPLeft][node] '''else''' '''if''' leftBorder != rightBorder update(newElem, x1, x2, ..., xP, node, x1Left, x1Rigth, x2Left, x2Right, ..., leftBorder, rightBorder, 0, m -размерность 1, 0)</code> Заметим, что построение дереватребует <tex>O(n)</tex> времени, где <tex>n</tex> {{---}} общее число элементов в массиве. ==См. также==*[[Дерево отрезков.Построение]]*[[Сжатое многомерное дерево отрезков]]*[[Многомерное дерево Фенвика]] ==Источники информации==* [http://e-maxx.ru/algo/segment_tree MAXimal :: algo :: Дерево отрезков]* [http://habrahabr.ru/post/131072/)/ Habrahabr {{---}} Двумерное дерево отрезков] [[Категория: Дискретная математика и алгоритмы]][[Категория: Дерево отрезков]][[Категория: Модификации структур данных]]