Транзитивный остов — различия между версиями
Alexandra (обсуждение | вклад) (→Алгоритм для антисимметричных отношений) |
м (rollbackEdits.php mass rollback) |
||
(не показано 12 промежуточных версий 4 участников) | |||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Транзитивным остовом''' (англ. ''transitive reduction'') [[Определение отношения|отношения]] <tex> R </tex> на множестве <tex> X </tex> называется минимальное отношение <tex> R^- </tex> на <tex> X </tex> такое, что [[транзитивное замыкание]] <tex> R^- </tex> равно транзитивному замыканию <tex> R </tex>. | + | '''Транзитивным остовом''' (или '''транзитивным сокращением''', англ. ''transitive reduction'') [[Определение отношения|отношения]] <tex> R </tex> на множестве <tex> X </tex> называется минимальное отношение <tex> R^- </tex> на <tex> X </tex> такое, что [[транзитивное замыкание]] <tex> R^- </tex> равно транзитивному замыканию <tex> R </tex>. |
}} | }} | ||
__TOC__ | __TOC__ | ||
== Алгоритм для антисимметричных отношений == | == Алгоритм для антисимметричных отношений == | ||
+ | ===Описание алгоритма=== | ||
+ | Пусть первоначально <tex>R^-=R</tex>. | ||
+ | |||
+ | Чтобы сделать <tex>R^-</tex> минимальным отношением на <tex>X</tex>, таким, что транзитивное замыкание <tex>R^-</tex> будет равно транзитивному замыканию <tex>R</tex>, рассмотрим всевозможные комбинации из каждых трёх элементов <tex>a, b, c \in X</tex>. Если для этих элементов существует каждое из отношений: <tex>aRb</tex>, <tex>bRc</tex> и <tex>aRc</tex>, {{---}} то исключим отношение <tex>aRc</tex> из <tex>R^-</tex>. После проверки всех комбинаций и исключения ненужных отношений получаем искомое отношение <tex>R^-</tex>. | ||
+ | |||
+ | === Псевдокод === | ||
+ | '''function''' <tex>f</tex>(<tex>X</tex>: '''List<T>''', <tex>R</tex>: '''List<T>'''): | ||
+ | <tex>R^- = R</tex> | ||
+ | '''foreach''' <tex>a \in X</tex> | ||
+ | '''foreach''' <tex>b \in X</tex> | ||
+ | '''foreach''' <tex>c \in X</tex> | ||
+ | '''if''' <tex>aRb</tex> '''and''' <tex>bRc</tex> '''and''' <tex>aRc</tex> | ||
+ | <tex>R^- = R^-\setminus(a, c)</tex> | ||
+ | |||
+ | ===Доказательство корректности=== | ||
Для удобства представим отношение в виде [[Основные определения теории графов|графа]]: <tex> G = \left < V, E \right > </tex>. Его транзитивным остовом будет граф <tex> G^- = \left < V, E^- \right > </tex>. | Для удобства представим отношение в виде [[Основные определения теории графов|графа]]: <tex> G = \left < V, E \right > </tex>. Его транзитивным остовом будет граф <tex> G^- = \left < V, E^- \right > </tex>. | ||
Введём несколько обозначений: | Введём несколько обозначений: | ||
− | * <tex> u \underset{G}{\to} v </tex> | + | * <tex> u \underset{G}{\to} v </tex> {{---}} в графе <tex> G </tex> есть ребро из вершины <tex> u </tex> в <tex> v </tex>, |
− | * <tex> u \underset{G}{\leadsto} v </tex> | + | * <tex> u \underset{G}{\leadsto} v </tex> {{---}} в графе <tex> G </tex> есть путь (возможно, рёберно пустой) из вершины <tex> u </tex> в <tex> v </tex>, |
− | * <tex> u \underset{G}{\overset{+}{\leadsto}} v </tex> | + | * <tex> u \underset{G}{\overset{+}{\leadsto}} v </tex> {{---}} в графе <tex> G </tex> есть рёберно непустой путь из вершины <tex> u </tex> в <tex> v </tex>. |
Также введём определение транзитивного замыкания в терминах теории графов: | Также введём определение транзитивного замыкания в терминах теории графов: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Транзитивным замыканием''' графа <tex> G = \left < V, E \right > </tex> называется граф <tex> G^* = \left < V, E^* \right > </tex>, где <tex> E^* = \left \{ (i, j) \in V \times V \mid i \underset{G}{\leadsto} j \right \} </tex>. | + | '''Транзитивным замыканием''' (англ. ''transitive closure'') графа <tex> G = \left < V, E \right > </tex> называется граф <tex> G^* = \left < V, E^* \right > </tex>, где <tex> E^* = \left \{ (i, j) \in V \times V \mid i \underset{G}{\leadsto} j \right \} </tex>. |
}} | }} | ||
− | + | Так как отношение антисимметрично и транзитивно, то граф ацикличен, то есть в нём выполняется следующее: <tex> \forall i, j \in V: i \underset{G}{\overset{+}{\leadsto}} j \Longrightarrow i \neq j </tex>. | |
− | Так как отношение антисимметрично, то граф ацикличен, то есть в нём выполняется следующее: <tex> \forall i, j \in V: i \underset{G}{\overset{+}{\leadsto}} j \Longrightarrow i \neq j </tex>. | ||
Докажем теорему, из которой следует алгоритм. | Докажем теорему, из которой следует алгоритм. | ||
Строка 40: | Строка 54: | ||
}} | }} | ||
− | === | + | ===Ассимптотика=== |
− | + | Для множества <tex>X</tex> c количеством элементов <tex>n</tex> алгоритм работает за <tex>O(n^3)</tex>, так как в каждом из трёх циклов мы пробегаемся по всем элементам множества <tex>X</tex>. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==См. также== | ==См. также== |
Текущая версия на 19:39, 4 сентября 2022
Определение: |
Транзитивным остовом (или транзитивным сокращением, англ. transitive reduction) отношения на множестве называется минимальное отношение на такое, что транзитивное замыкание равно транзитивному замыканию . |
Содержание
Алгоритм для антисимметричных отношений
Описание алгоритма
Пусть первоначально
.Чтобы сделать
минимальным отношением на , таким, что транзитивное замыкание будет равно транзитивному замыканию , рассмотрим всевозможные комбинации из каждых трёх элементов . Если для этих элементов существует каждое из отношений: , и , — то исключим отношение из . После проверки всех комбинаций и исключения ненужных отношений получаем искомое отношение .Псевдокод
function( : List<T>, : List<T>): foreach foreach foreach if and and
Доказательство корректности
Для удобства представим отношение в виде графа: . Его транзитивным остовом будет граф .
Введём несколько обозначений:
- — в графе есть ребро из вершины в ,
- — в графе есть путь (возможно, рёберно пустой) из вершины в ,
- — в графе есть рёберно непустой путь из вершины в .
Также введём определение транзитивного замыкания в терминах теории графов:
Определение: |
Транзитивным замыканием (англ. transitive closure) графа | называется граф , где .
Так как отношение антисимметрично и транзитивно, то граф ацикличен, то есть в нём выполняется следующее:
.Докажем теорему, из которой следует алгоритм.
Теорема: |
Пусть . Тогда |
Доказательство: |
Докажем, что :
Докажем, что :
|
Ассимптотика
Для множества
c количеством элементов алгоритм работает за , так как в каждом из трёх циклов мы пробегаемся по всем элементам множества .См. также
Источники информации
- Wikipedia: Transitive reduction
- J.A. La Poutré and J. van Leeuwen. «Maintenance of transitive closures and transitive reductions of graphs», 1987.