Транзитивный остов — различия между версиями
Alexandra (обсуждение | вклад) (→Псевдокод) |
м (rollbackEdits.php mass rollback) |
||
(не показано 5 промежуточных версий 3 участников) | |||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Транзитивным остовом''' (англ. ''transitive reduction'') [[Определение отношения|отношения]] <tex> R </tex> на множестве <tex> X </tex> называется минимальное отношение <tex> R^- </tex> на <tex> X </tex> такое, что [[транзитивное замыкание]] <tex> R^- </tex> равно транзитивному замыканию <tex> R </tex>. | + | '''Транзитивным остовом''' (или '''транзитивным сокращением''', англ. ''transitive reduction'') [[Определение отношения|отношения]] <tex> R </tex> на множестве <tex> X </tex> называется минимальное отношение <tex> R^- </tex> на <tex> X </tex> такое, что [[транзитивное замыкание]] <tex> R^- </tex> равно транзитивному замыканию <tex> R </tex>. |
}} | }} | ||
Строка 31: | Строка 31: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Транзитивным замыканием''' графа <tex> G = \left < V, E \right > </tex> называется граф <tex> G^* = \left < V, E^* \right > </tex>, где <tex> E^* = \left \{ (i, j) \in V \times V \mid i \underset{G}{\leadsto} j \right \} </tex>. | + | '''Транзитивным замыканием''' (англ. ''transitive closure'') графа <tex> G = \left < V, E \right > </tex> называется граф <tex> G^* = \left < V, E^* \right > </tex>, где <tex> E^* = \left \{ (i, j) \in V \times V \mid i \underset{G}{\leadsto} j \right \} </tex>. |
}} | }} | ||
− | Так как отношение антисимметрично, то граф ацикличен, то есть в нём выполняется следующее: <tex> \forall i, j \in V: i \underset{G}{\overset{+}{\leadsto}} j \Longrightarrow i \neq j </tex>. | + | Так как отношение антисимметрично и транзитивно, то граф ацикличен, то есть в нём выполняется следующее: <tex> \forall i, j \in V: i \underset{G}{\overset{+}{\leadsto}} j \Longrightarrow i \neq j </tex>. |
Докажем теорему, из которой следует алгоритм. | Докажем теорему, из которой следует алгоритм. | ||
Строка 53: | Строка 53: | ||
Так как множества <tex> E^- </tex> и <tex> \left \{ k \underset{G}{\to} m \mid \forall l: [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] \right \} </tex> включены друг в друга, они совпадают, то есть равны. | Так как множества <tex> E^- </tex> и <tex> \left \{ k \underset{G}{\to} m \mid \forall l: [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] \right \} </tex> включены друг в друга, они совпадают, то есть равны. | ||
}} | }} | ||
+ | |||
===Ассимптотика=== | ===Ассимптотика=== | ||
Для множества <tex>X</tex> c количеством элементов <tex>n</tex> алгоритм работает за <tex>O(n^3)</tex>, так как в каждом из трёх циклов мы пробегаемся по всем элементам множества <tex>X</tex>. | Для множества <tex>X</tex> c количеством элементов <tex>n</tex> алгоритм работает за <tex>O(n^3)</tex>, так как в каждом из трёх циклов мы пробегаемся по всем элементам множества <tex>X</tex>. |
Текущая версия на 19:39, 4 сентября 2022
Определение: |
Транзитивным остовом (или транзитивным сокращением, англ. transitive reduction) отношения на множестве называется минимальное отношение на такое, что транзитивное замыкание равно транзитивному замыканию . |
Содержание
Алгоритм для антисимметричных отношений
Описание алгоритма
Пусть первоначально
.Чтобы сделать
минимальным отношением на , таким, что транзитивное замыкание будет равно транзитивному замыканию , рассмотрим всевозможные комбинации из каждых трёх элементов . Если для этих элементов существует каждое из отношений: , и , — то исключим отношение из . После проверки всех комбинаций и исключения ненужных отношений получаем искомое отношение .Псевдокод
function( : List<T>, : List<T>): foreach foreach foreach if and and
Доказательство корректности
Для удобства представим отношение в виде графа: . Его транзитивным остовом будет граф .
Введём несколько обозначений:
- — в графе есть ребро из вершины в ,
- — в графе есть путь (возможно, рёберно пустой) из вершины в ,
- — в графе есть рёберно непустой путь из вершины в .
Также введём определение транзитивного замыкания в терминах теории графов:
Определение: |
Транзитивным замыканием (англ. transitive closure) графа | называется граф , где .
Так как отношение антисимметрично и транзитивно, то граф ацикличен, то есть в нём выполняется следующее:
.Докажем теорему, из которой следует алгоритм.
Теорема: |
Пусть . Тогда |
Доказательство: |
Докажем, что :
Докажем, что :
|
Ассимптотика
Для множества
c количеством элементов алгоритм работает за , так как в каждом из трёх циклов мы пробегаемся по всем элементам множества .См. также
Источники информации
- Wikipedia: Transitive reduction
- J.A. La Poutré and J. van Leeuwen. «Maintenance of transitive closures and transitive reductions of graphs», 1987.