Неотделимые множества — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показаны 4 промежуточные версии 3 участников) | |||
Строка 34: | Строка 34: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Существуют такие непересекающиеся перечислимые множества <tex>X'</tex> и <tex>Y'</tex>, что не существует таких разрешимых множеств <tex>X</tex> и <tex>Y</tex>, что <tex>X' \subset X</tex>, <tex>Y' \subset Y</tex>, <tex>X \cap Y = \ | + | Существуют такие непересекающиеся перечислимые множества <tex>X'</tex> и <tex>Y'</tex>, что не существует таких разрешимых множеств <tex>X</tex> и <tex>Y</tex>, что <tex>X' \subset X</tex>, <tex>Y' \subset Y</tex>, <tex>X \cap Y = \varnothing</tex>, <tex>X \cup Y = \mathbb{N}</tex>. Такие множества <tex>X'</tex> и <tex>Y'</tex> называют '''неотделимыми''' (англ. ''inseparable sets''). |
|proof= | |proof= | ||
Рассмотрим множества <tex>X' = \{n \mid f(n) = 0\}</tex> и <tex>Y' = \{n \mid f(n) = 1\}</tex>, где <tex>f(n)</tex> {{---}} функция из леммы 2. | Рассмотрим множества <tex>X' = \{n \mid f(n) = 0\}</tex> и <tex>Y' = \{n \mid f(n) = 1\}</tex>, где <tex>f(n)</tex> {{---}} функция из леммы 2. | ||
Строка 46: | Строка 46: | ||
}} | }} | ||
− | Неотделимые множества используются | + | Неотделимые множества используются в доказательстве других фактов<ref>[http://www.mccme.ru/free-books/shen/shen-logic-part3-2.pdf Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. с. 39, с. 63, c. 100. ISBN 5-900916-36-7]</ref>. |
== Примечания == | == Примечания == | ||
Строка 54: | Строка 54: | ||
== Источники информации == | == Источники информации == | ||
− | |||
* [http://en.wikipedia.org/wiki/Recursively_inseparable_sets Wikipedia {{---}} Recursively inseparable sets] | * [http://en.wikipedia.org/wiki/Recursively_inseparable_sets Wikipedia {{---}} Recursively inseparable sets] | ||
* Gasarch, William (1998), "A survey of recursive combinatorics", Handbook of recursive mathematics, Vol. 2, Stud. Logic Found. Math. 139, Amsterdam: North-Holland, pp. 1041–1176, MR 1673598 | * Gasarch, William (1998), "A survey of recursive combinatorics", Handbook of recursive mathematics, Vol. 2, Stud. Logic Found. Math. 139, Amsterdam: North-Holland, pp. 1041–1176, MR 1673598 |
Текущая версия на 19:41, 4 сентября 2022
Лемма (1): |
Существует вычислимая функция, не имеющая всюду определенного вычислимого продолжения. |
Доказательство: |
Рассмотрим функцию универсальная функция. , где —Предположим, у нее существует всюду определенное продолжение и .По определению универсальной функции для некоторого .Поскольку Таким образом, построенная функция всюду определена, то . Значит, определено значение и . Получили противоречие. не имеет всюду определенного вычислимого продолжения. |
Лемма (2): |
Существует вычислимая функция, значения которой принадлежат множеству , не имеющая всюду определенного вычислимого продолжения. |
Доказательство: |
Рассмотрим функцию Предположим, у нее существует всюду определенное продолжение Поскольку для некоторого . всюду определена, то и определено значение . Но по построению функции видим, что . Получили противоречие. |
Теорема: |
Существуют такие непересекающиеся перечислимые множества и , что не существует таких разрешимых множеств и , что , , , . Такие множества и называют неотделимыми (англ. inseparable sets). |
Доказательство: |
Рассмотрим множества и , где — функция из леммы 2.Пусть существуют Заметим, что и , удовлетворяющие указанным свойствам, тогда вычислима характеристическая функция множества . всюду определена и является продолжением , что противоречит лемме 2. |
Неотделимые множества используются в доказательстве других фактов[1].
Примечания
Источники информации
- Wikipedia — Recursively inseparable sets
- Gasarch, William (1998), "A survey of recursive combinatorics", Handbook of recursive mathematics, Vol. 2, Stud. Logic Found. Math. 139, Amsterdam: North-Holland, pp. 1041–1176, MR 1673598
- Smullyan, Raymond M. (1958), "Undecidability and recursive inseparability", Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 4: 143–147