Дисперсия случайной величины — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показаны 4 промежуточные версии 4 участников) | |||
Строка 5: | Строка 5: | ||
'''Дисперсией''' [[Дискретная случайная величина|случайной величины]] (англ. ''variance'') называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: <tex>D \xi = E(\xi -E\xi)^2 </tex>, где <tex>\xi</tex> {{---}} случайная величина, а <tex>E</tex> {{---}} символ, обозначающий [[Дискретная случайная величина#Математическое ожидание случайной величины|математическое ожидание]]}} | '''Дисперсией''' [[Дискретная случайная величина|случайной величины]] (англ. ''variance'') называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: <tex>D \xi = E(\xi -E\xi)^2 </tex>, где <tex>\xi</tex> {{---}} случайная величина, а <tex>E</tex> {{---}} символ, обозначающий [[Дискретная случайная величина#Математическое ожидание случайной величины|математическое ожидание]]}} | ||
− | Дисперсия характеризует разброс [[Дискретная случайная величина|случайной величины]] вокруг ее [[ | + | Дисперсия характеризует разброс [[Дискретная случайная величина|случайной величины]] вокруг ее [[Математическое ожидание случайной величины|математического ожидания]]. |
Корень из дисперсии называется средним квадратичным отклонением. Оно используется для оценки масштаба возможного | Корень из дисперсии называется средним квадратичным отклонением. Оно используется для оценки масштаба возможного | ||
Строка 11: | Строка 11: | ||
{{Утверждение | {{Утверждение | ||
− | |statement=В силу [[ Линейность математического ожидания|линейности математического ожидания]] справедлива формула | + | |statement=В силу [[ Линейность математического ожидания|линейности математического ожидания]] справедлива формула <tex>D \xi = E\xi^2 - (E\xi)^2</tex> |
− | |||
|proof=<tex>D \xi = E(\xi - E\xi)^2 = E(\xi^2 -2(E\xi)\xi + (E\xi)^2) = </tex> | |proof=<tex>D \xi = E(\xi - E\xi)^2 = E(\xi^2 -2(E\xi)\xi + (E\xi)^2) = </tex> | ||
<tex>= E\xi^2 + (E\xi)^2 - 2(E\xi)E\xi = E\xi^2 - (E\xi)^2 </tex> | <tex>= E\xi^2 + (E\xi)^2 - 2(E\xi)E\xi = E\xi^2 - (E\xi)^2 </tex> | ||
Строка 26: | Строка 25: | ||
*: <tex>D(\xi + \eta) = E(\xi + \eta - E(\xi + \eta))^2 = E(\xi - E\xi + \eta - E\eta)^2 =</tex> | *: <tex>D(\xi + \eta) = E(\xi + \eta - E(\xi + \eta))^2 = E(\xi - E\xi + \eta - E\eta)^2 =</tex> | ||
− | : <tex> = E(\xi - E\xi)^2 + 2E((\xi - E | + | : <tex> = E(\xi - E\xi)^2 + 2E((\xi - E\xi)(\eta - E\eta)) + E(\eta - E\eta)^2 = D\xi + D\eta + 2(E\xi\eta - E\xi E\eta))</tex> |
* При этом, <tex>E\xi\eta - E\xi E\eta = 0</tex>, так как <tex>\xi</tex> и <tex>\eta</tex> {{---}} независимые случайные величины. | * При этом, <tex>E\xi\eta - E\xi E\eta = 0</tex>, так как <tex>\xi</tex> и <tex>\eta</tex> {{---}} независимые случайные величины. |
Текущая версия на 19:41, 4 сентября 2022
Определение: |
Дисперсией случайной величины (англ. variance) называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания: , где — случайная величина, а — символ, обозначающий математическое ожидание |
Дисперсия характеризует разброс случайной величины вокруг ее математического ожидания.
Корень из дисперсии называется средним квадратичным отклонением. Оно используется для оценки масштаба возможного отклонения случайной величины от ее математического ожидания.
Утверждение: |
В силу линейности математического ожидания справедлива формула |
|
Содержание
Линейность
Теорема: |
Если и — независимые случайные величины, то: |
Доказательство: |
|
Свойства
- Дисперсия любой случайной величины неотрицательна:
- Если дисперсия случайной величины конечна, то конечно и её математическое ожидание
- Если случайная величина равна константе, то её дисперсия равна нулю:
- Дисперсия суммы двух случайных величин равна:
- ковариация , где — их
- , где — константа. В частности,
- , где — константа.
Связь с центральным моментом
Определение: |
Центральным моментом (англ. central moment) | -ого порядка случайной величины называется величина , определяемая формулой .
Заметим, что если
равно двум, то . Таким образом, дисперсия является центральным моментом второго порядка.Пример
Рассмотрим простой пример вычисления математического ожидания и дисперсии.
Задача: |
Найти математическое ожидание и дисперсию числа очков, выпавших на честной игральной кости с первого броска. |
Вычислим математическое ожидание:
Вычислим дисперсию:
См. также
Источники информации
- Романовский И. В. Дискретный анализ, 3-е изд.: Издательский дом "Невский диалект", 2003 — стр. 68.
- Википедия — Дисперсия случайной величины
- Wikipedia — Variance
- EXPonenta.ru — Числовые характеристики случайных величин