Отношение порядка — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Примеры)
м (rollbackEdits.php mass rollback)
 
(не показано 6 промежуточных версий 5 участников)
Строка 4: Строка 4:
 
[[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''отношением частичного порядка''' (англ. ''partial order relation''), если оно обладает следующими свойствами:
 
[[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''отношением частичного порядка''' (англ. ''partial order relation''), если оно обладает следующими свойствами:
 
* [[Рефлексивное отношение|Рефлексивность]] (англ. ''reflexivity''): <tex>\forall a \in X: aRa</tex>.
 
* [[Рефлексивное отношение|Рефлексивность]] (англ. ''reflexivity''): <tex>\forall a \in X: aRa</tex>.
* [[Симметричное отношение|Антисимметричность]] (англ. ''antisymmetry''): <tex>\forall a, b \in X:</tex> если <tex>aRb</tex> и <tex>bRa</tex>, то <tex> a = b </tex>.
+
* [[Антисимметричное отношение|Антисимметричность]] (англ. ''antisymmetry''): <tex>\forall a, b \in X:</tex> если <tex>aRb</tex> и <tex>bRa</tex>, то <tex> a = b </tex>.
 
* [[Транзитивное отношение|Транзитивность]] (англ. ''transitivity''): <tex>\forall a, b, c \in X:</tex> если <tex>aRb</tex> и <tex>bRc</tex>, то <tex>aRc</tex>.
 
* [[Транзитивное отношение|Транзитивность]] (англ. ''transitivity''): <tex>\forall a, b, c \in X:</tex> если <tex>aRb</tex> и <tex>bRc</tex>, то <tex>aRc</tex>.
 
}}
 
}}
Строка 14: Строка 14:
 
[[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''строгим отношением частичного порядка''' (англ. ''strict order relation''), если оно обладает следующими свойствами:
 
[[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''строгим отношением частичного порядка''' (англ. ''strict order relation''), если оно обладает следующими свойствами:
 
* [[Рефлексивное отношение|Антирефлексивность]] (англ. ''irreflexivity''): <tex>\forall a \in X: aRa </tex> — не выполняется.
 
* [[Рефлексивное отношение|Антирефлексивность]] (англ. ''irreflexivity''): <tex>\forall a \in X: aRa </tex> — не выполняется.
* [[Симметричное отношение|Антисимметричность]] (англ. ''antisymmetry''): <tex>\forall a, b \in X:</tex> если <tex>aRb</tex> и <tex>bRa</tex>, то <tex> a = b </tex>.
+
* [[Антисимметричное отношение|Антисимметричность]] (англ. ''antisymmetry''): <tex>\forall a, b \in X:</tex> если <tex>aRb</tex> и <tex>bRa</tex>, то <tex> a = b </tex>.
 
* [[Транзитивное отношение|Транзитивность]]:  (англ. ''transitivity'') <tex>\forall a, b, c \in X:</tex> если <tex>aRb</tex> и <tex>bRc</tex>, то <tex>aRc</tex>.
 
* [[Транзитивное отношение|Транзитивность]]:  (англ. ''transitivity'') <tex>\forall a, b, c \in X:</tex> если <tex>aRb</tex> и <tex>bRc</tex>, то <tex>aRc</tex>.
 
}}
 
}}
Строка 26: Строка 26:
 
|definition =
 
|definition =
 
[[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''отношением полного порядка''' (англ. ''well-order relation''), если оно является отношением линейного порядка и обладает следующим свойством:
 
[[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''отношением полного порядка''' (англ. ''well-order relation''), если оно является отношением линейного порядка и обладает следующим свойством:
  <tex>\forall Y \in X \exists a \in Y \forall b \in Y: aRb</tex>.
+
  <tex>\forall Y \subset  X \exists a \in Y \forall b \in Y: aRb</tex>.
 
}}
 
}}
 
Множество <tex>X</tex>, на котором введено отношение полного порядка, называется '''полностью упорядоченным''' (англ. ''well-order'').
 
Множество <tex>X</tex>, на котором введено отношение полного порядка, называется '''полностью упорядоченным''' (англ. ''well-order'').
Строка 35: Строка 35:
  
 
== Примеры ==
 
== Примеры ==
 +
 
* На множестве вещественных чисел отношения «больше» и «меньше» являются отношениями строгого порядка, а «больше или равно» и «меньше или равно» — нестрогого, причем линейного порядка, но не полного.
 
* На множестве вещественных чисел отношения «больше» и «меньше» являются отношениями строгого порядка, а «больше или равно» и «меньше или равно» — нестрогого, причем линейного порядка, но не полного.
 
* Отношение «является делителем» на множестве натуральных чисел является отношением частичного порядка.
 
* Отношение «является делителем» на множестве натуральных чисел является отношением частичного порядка.
* В то же время отношение «является делителем» на множестве целых чисел не является отношением частичного порядка. Это легко видеть на следующем примере: <tex> 2 </tex> делится на <tex> -2 </tex>, а <tex> -2 </tex> делится на <tex> 2 </tex>.  Однако <tex> 2 \neq -2</tex>.
 
 
* Отношение «меньше или равно» является отношением полного порядка на множестве натуральных чисел.
 
* Отношение «меньше или равно» является отношением полного порядка на множестве натуральных чисел.
* Отношение «лексекографически не меньше» на множестве всех возможных слов, составленных из букв русского алфавита, является отношением полного порядка.
+
* Отношение «лексикографически не меньше» на множестве всех возможных слов, составленных из букв русского алфавита, является отношением полного порядка.
 
* Отношение «состоит в подчинении» на множестве работников компании является отношением нестрогого порядка.  
 
* Отношение «состоит в подчинении» на множестве работников компании является отношением нестрогого порядка.  
 
* Можно рассмотреть отношение «не младше» на множестве некоторой группы людей. Для соблюдения всех тонкостей скажем, что их даты рождения различны. Это отношение транзитивно (если ''человек A'' не младше ''человека B'', а ''человек B'' не младше ''человека C'', то ''человек A'' не младше ''человека C''), антисимметрично (если ''человек A'' не младше ''человека B'' и ''человек B'' не младше ''человека A'', то это один и тот же человек) и рефлексивно (каждый человек не младше самого себя). Из этого следует, что данное отношение является отношением частичного линейного порядка.
 
* Можно рассмотреть отношение «не младше» на множестве некоторой группы людей. Для соблюдения всех тонкостей скажем, что их даты рождения различны. Это отношение транзитивно (если ''человек A'' не младше ''человека B'', а ''человек B'' не младше ''человека C'', то ''человек A'' не младше ''человека C''), антисимметрично (если ''человек A'' не младше ''человека B'' и ''человек B'' не младше ''человека A'', то это один и тот же человек) и рефлексивно (каждый человек не младше самого себя). Из этого следует, что данное отношение является отношением частичного линейного порядка.
 +
 +
* Отношение «является делителем» на множестве целых чисел не является отношением частичного порядка. Это легко видеть на следующем примере: <tex> 2 </tex> делится на <tex> -2 </tex>, а <tex> -2 </tex> делится на <tex> 2 </tex>.  Однако <tex> 2 \neq -2</tex>.
 +
* Отношение «больше или равно по модулю» на множестве комплексных чисел не является отношением порядка. Из равенства модулей не следует равенство самих чисел, тем самым нарушается антисимметричность. Это демонстрирует данный пример: модули комплексных чисел <tex> 3 + 4i </tex> и <tex> 4 + 3i </tex> равны, но сами числа разные.
  
 
==См. также==
 
==См. также==

Текущая версия на 19:41, 4 сентября 2022

Определения

Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется отношением частичного порядка (англ. partial order relation), если оно обладает следующими свойствами:

Множество [math]X[/math], на котором введено отношение частичного порядка, называется частично упорядоченным.

Отношение частичного порядка также называют нестрогим порядком (англ. non-strict order).

Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется строгим отношением частичного порядка (англ. strict order relation), если оно обладает следующими свойствами:


Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется отношением линейного порядка (англ. total order relation), если оно является отношением частичного порядка и обладает следующим свойством: [math]\forall a \in X \forall b \in X[/math] либо [math]aRb[/math], либо [math]bRa[/math].

Множество [math]X[/math], на котором введено отношение линейного порядка, называется линейно упорядоченным (англ. total order).

Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется отношением полного порядка (англ. well-order relation), если оно является отношением линейного порядка и обладает следующим свойством: [math]\forall Y \subset X \exists a \in Y \forall b \in Y: aRb[/math].

Множество [math]X[/math], на котором введено отношение полного порядка, называется полностью упорядоченным (англ. well-order).

Отношение нестрогого порядка обозначают символом [math]\leqslant[/math]. Запись вида [math]a \leqslant b[/math] читают как «[math]a[/math] меньше либо равно [math]b[/math]».

Отношение строгого порядка обозначают символом [math]\lt [/math]. Запись вида [math]a \lt b[/math] читают как «[math]a[/math] меньше [math]b[/math]».

Примеры

  • На множестве вещественных чисел отношения «больше» и «меньше» являются отношениями строгого порядка, а «больше или равно» и «меньше или равно» — нестрогого, причем линейного порядка, но не полного.
  • Отношение «является делителем» на множестве натуральных чисел является отношением частичного порядка.
  • Отношение «меньше или равно» является отношением полного порядка на множестве натуральных чисел.
  • Отношение «лексикографически не меньше» на множестве всех возможных слов, составленных из букв русского алфавита, является отношением полного порядка.
  • Отношение «состоит в подчинении» на множестве работников компании является отношением нестрогого порядка.
  • Можно рассмотреть отношение «не младше» на множестве некоторой группы людей. Для соблюдения всех тонкостей скажем, что их даты рождения различны. Это отношение транзитивно (если человек A не младше человека B, а человек B не младше человека C, то человек A не младше человека C), антисимметрично (если человек A не младше человека B и человек B не младше человека A, то это один и тот же человек) и рефлексивно (каждый человек не младше самого себя). Из этого следует, что данное отношение является отношением частичного линейного порядка.
  • Отношение «является делителем» на множестве целых чисел не является отношением частичного порядка. Это легко видеть на следующем примере: [math] 2 [/math] делится на [math] -2 [/math], а [math] -2 [/math] делится на [math] 2 [/math]. Однако [math] 2 \neq -2[/math].
  • Отношение «больше или равно по модулю» на множестве комплексных чисел не является отношением порядка. Из равенства модулей не следует равенство самих чисел, тем самым нарушается антисимметричность. Это демонстрирует данный пример: модули комплексных чисел [math] 3 + 4i [/math] и [math] 4 + 3i [/math] равны, но сами числа разные.

См. также

Источники информации