Хеш-таблица — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показаны 34 промежуточные версии 7 участников) | |||
Строка 1: | Строка 1: | ||
− | {{Определение | + | {{Определение |
− | |definition= | + | |definition='''Хеш-табли́ца''' (англ. ''hash-table'') {{---}} структура данных, реализующая интерфейс ассоциативного массива. В отличие от [[Дерево_поиска,_наивная_реализация|деревьев поиска]], реализующих тот же интерфейс, обеспечивают меньшее время отклика в среднем. Представляет собой эффективную структуру данных для реализации словарей, а именно, она позволяет хранить пары (ключ, значение) и выполнять три операции: операцию добавления новой пары, операцию поиска и операцию удаления пары по ключу. |
− | '''Хеш-табли́ца''' (англ. ''hash-table'') {{---}} структура данных, реализующая интерфейс ассоциативного массива. Представляет собой эффективную структуру данных для реализации словарей, а именно, она позволяет хранить пары (ключ, значение) и выполнять три операции: операцию добавления новой пары, операцию поиска и операцию удаления пары по ключу. | ||
}} | }} | ||
=== Введение === | === Введение === | ||
− | Существует два основных вида хеш-таблиц: ''с цепочками'' и ''открытой адресацией''. Хеш-таблица содержит некоторый массив <tex>H</tex>, элементы которого есть пары (хеш-таблица с открытой адресацией) или списки пар (хеш-таблица с цепочками). | + | Существует два основных вида хеш-таблиц: [[Разрешение_коллизий#Разрешение коллизий с помощью цепочек|''с цепочками'']] и [[Разрешение_коллизий#Линейное разрешение коллизий|''открытой адресацией'']]. Хеш-таблица содержит некоторый массив <tex>H</tex>, элементы которого есть пары (хеш-таблица с открытой адресацией) или списки пар (хеш-таблица с цепочками). |
Выполнение операции в хеш-таблице начинается с вычисления хеш-функции от ключа. Хеш-код <tex>i = h(key)</tex> играет роль индекса в массиве <tex>H</tex>, а зная индекс, мы можем выполнить требующуюся операцию (добавление, удаление или поиск). | Выполнение операции в хеш-таблице начинается с вычисления хеш-функции от ключа. Хеш-код <tex>i = h(key)</tex> играет роль индекса в массиве <tex>H</tex>, а зная индекс, мы можем выполнить требующуюся операцию (добавление, удаление или поиск). | ||
− | Количество коллизий зависит от хеш-функции; чем лучше используемая хеш-функция, тем меньше вероятность их возникновения. | + | Количество коллизий зависит от хеш-функции; чем лучше используемая хеш-функция, тем меньше вероятность их возникновения. |
− | <tex>p(n) | + | {{Лемма |
− | + | |statement=Вероятность коллизий при вставке в хеш-таблицу превышает 50% | |
+ | |proof= | ||
+ | |||
+ | Пусть хеш-таблица имеет размер <tex>len</tex> и в нее добавляют <tex>n</tex> элементов. Рассмотрим <tex>{p}'(n)</tex> — вероятность того, что не возникнет ни одной коллизии. Добавим два любых элемента в нашу хеш-таблицу. Вероятность того, что они не попадут в одну и ту же ячейку таблицы равна <tex>1 - \dfrac{1}{len}</tex>. Возьмем еще один элемент. Тогда вероятность того, что третий элемент не попадет в одну из уже занятых ячеек равна <tex>1 - \dfrac{2}{len}</tex>. Рассуждая аналогичным образом, получим формулу: | ||
+ | <tex>{p}'(n) = \left( 1 - \dfrac{1}{len}\right )\cdot \left( 1 - \dfrac{2}{len}\right )\dots\left( 1 - \dfrac{n - 1}{len}\right ) = \dfrac{len \cdot \left(len - 1 \right )\dots\left (len - n + 1 \right )}{len^{n}} = \dfrac{len!}{len^{n} \cdot \left (len - n \right)!}</tex> | ||
+ | |||
+ | Тогда <tex>{p}(n)</tex> — вероятность возникновения коллизии равна: | ||
+ | <tex>p(n) = 1 - {p}'(n)</tex>, | ||
+ | что в общем случае <tex> > \dfrac{1}{2}</tex> | ||
+ | }} | ||
+ | |||
+ | Способ разрешения коллизий — важная составляющая любой хеш-таблицы. | ||
Полностью избежать коллизий для произвольных данных невозможно в принципе, и хорошая хеш-функция в состоянии только минимизировать их количество. Но, в некоторых специальных случаях их удаётся избежать. Если все ключи элементов известны заранее, либо меняются очень редко, то можно подобрать хеш-функцию, с помощью которой, все ключи будут распределены по хеш-таблице без коллизий. Это хеш-таблицы с ''прямой адресацией''; в них все операции, такие как: поиск, вставка и удаление работают за <tex>O(1)</tex>. | Полностью избежать коллизий для произвольных данных невозможно в принципе, и хорошая хеш-функция в состоянии только минимизировать их количество. Но, в некоторых специальных случаях их удаётся избежать. Если все ключи элементов известны заранее, либо меняются очень редко, то можно подобрать хеш-функцию, с помощью которой, все ключи будут распределены по хеш-таблице без коллизий. Это хеш-таблицы с ''прямой адресацией''; в них все операции, такие как: поиск, вставка и удаление работают за <tex>O(1)</tex>. | ||
Строка 18: | Строка 28: | ||
=== Хеширование === | === Хеширование === | ||
− | + | '''Хеширование''' (англ. ''hashing'') {{---}} класс методов поиска, идея которого состоит в вычислении хеш-кода, однозначно определяемого элементом с помощью хеш-функции, и использовании его, как основы для поиска (индексирование в памяти по хеш-коду выполняется за <tex>O(1)</tex>). В общем случае, однозначного соответствия между исходными данными и хеш-кодом нет в силу того, что количество значений хеш-функций меньше, чем вариантов исходных данных, поэтому существуют элементы, имеющие одинаковые хеш-коды — так называемые коллизии, но если два элемента имеют разный хеш-код, то они гарантированно | |
− | + | различаются. Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций. Для того чтобы коллизии не замедляли работу с таблицей существуют [[Разрешение коллизий|методы для борьбы с ними]]. | |
− | '''Хеширование''' {{---}} класс методов поиска, идея которого состоит в вычислении хеш-кода, однозначно определяемого элементом с помощью хеш-функции, и использовании его, как основы для поиска (индексирование в памяти по хеш-коду выполняется за <tex>O(1)</tex>). В общем случае, однозначного соответствия между исходными данными и хеш-кодом нет в силу того, что количество значений хеш-функций меньше, чем вариантов исходных данных, поэтому существуют элементы, имеющие одинаковые хеш-коды — так называемые коллизии, но если два элемента имеют разный хеш-код, то они гарантированно | ||
− | различаются. Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций. Для того чтобы коллизии не замедляли работу с | ||
− | |||
{{Определение | {{Определение | ||
|id=def1 | |id=def1 | ||
− | |definition=<tex>U </tex> {{---}} множество объектов (универсум).<br> <tex>h : U \rightarrow S = \mathcal {f} 0 \dots m - 1 \mathcal {g}</tex> {{---}} называется хеш-функцией, где множество <tex>S</tex> хранит ключи из множества <tex>U</tex>.<br> Если <tex>x \in U</tex> значит <tex>h(x) \in S</tex> <br> '''Коллизия | + | |definition=<tex>U </tex> {{---}} множество объектов (универсум).<br> <tex>h : U \rightarrow S = \mathcal {f} 0 \dots m - 1 \mathcal {g}</tex> {{---}} называется хеш-функцией, где множество <tex>S</tex> хранит ключи из множества <tex>U</tex>.<br> Если <tex>x \in U</tex> значит <tex>h(x) \in S</tex> <br> '''Коллизия''' (англ. ''collision''): <tex>\exists x \neq y : h(x) = h(y)</tex> |
}} | }} | ||
==== Виды хеширования ==== | ==== Виды хеширования ==== | ||
* По способу хранения: | * По способу хранения: | ||
− | + | Статическое {{---}} фиксированное количество элементов. Один раз заполняем хеш-таблицу и осуществляем только проверку на наличие в ней нужных элементов, | |
− | + | ||
+ | Динамическое {{---}} добавляем, удаляем и смотрим на наличие нужных элементов. | ||
* По виду хеш-функции: | * По виду хеш-функции: | ||
− | + | Детерминированная хеш-функция, | |
− | + | ||
+ | Случайная хеш-функция. | ||
=== Свойства хеш-таблицы === | === Свойства хеш-таблицы === | ||
− | На поиск элемента в хеш-таблице в худшем случае, может потребоваться столько же времени, как и в списке, а именно <tex>\Theta(n)</tex>, но на практике хеширование более эффективно. При некоторых разумных допущениях математическое ожидание времени поиска элемента в хеш-таблице составляет <tex>O(1)</tex>. А все операции (поиск, вставка и удаление элементов) в среднем выполняются за время <tex>O(1)</tex>. | + | На поиск элемента в хеш-таблице в худшем случае, может потребоваться столько же времени, как и в списке, а именно <tex>\Theta(n)</tex>, но на практике хеширование более эффективно. При некоторых разумных допущениях [[Математическое_ожидание_случайной_величины|математическое ожидание]] времени поиска элемента в хеш-таблице составляет <tex>O(1)</tex>. А все операции (поиск, вставка и удаление элементов) в среднем выполняются за время <tex>O(1)</tex>. |
При этом не гарантируется, что время выполнения отдельной операции мало́, так как при достижении некоторого значения коэффициента заполнения необходимо [[Перехеширование. Амортизационный анализ|перехешировать]] таблицу: увеличить размер массива <tex>H</tex> и заново добавить в новую хеш-таблицу все пары. | При этом не гарантируется, что время выполнения отдельной операции мало́, так как при достижении некоторого значения коэффициента заполнения необходимо [[Перехеширование. Амортизационный анализ|перехешировать]] таблицу: увеличить размер массива <tex>H</tex> и заново добавить в новую хеш-таблицу все пары. | ||
+ | |||
+ | ===Хеширование в современных языках программирования=== | ||
+ | |||
+ | Почти во всех современных языках присутствуют классы, реализующие хеширование. Рассмотрим некоторые из них. | ||
+ | *Java | ||
+ | **HashMap <ref>[http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html HashMap {{---}} Java Platform SE 7]</ref> {{---}} реализация интерфейса ассоциативного массива с использованием хеш-таблицы, | ||
+ | **HashSet <ref>[http://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html HashSet {{---}} Java Platform SE 7]</ref> {{---}} реализация интерфейса множества с использованием хеш-таблицы, | ||
+ | **LinkedHashMap <ref>[http://docs.oracle.com/javase/7/docs/api/java/util/LinkedHashMap.html LinkedHashMap {{---}} Java Platform SE 7]</ref> {{---}} потомок класса HashMap. Позволяет просматривать значения в том порядке, в котором они были добавлены. | ||
+ | *C++ | ||
+ | **unordered_map <ref>[http://www.cplusplus.com/reference/unordered_map/unordered_map/ unordered_map {{---}} cplusplus.com]</ref> {{---}} реализация интерфейса ассоциативного массива с использованием хеш-таблицы, | ||
+ | **unordered_set <ref>[http://www.cplusplus.com/reference/unordered_map/unordered_set/ unordered_set {{---}} cplusplus.com]</ref> {{---}} реализация интерфейса множества с использованием хеш-таблицы. | ||
+ | *Python (CPython) | ||
+ | **dict <ref>[https://github.com/python/cpython/blob/main/Objects/dictobject.c#L1 dictobject.c {{---}} https://github.com/python/cpython]</ref> {{---}} реализация интерфейса ассоциативного массива с использованием хеш-таблицы, | ||
+ | **set <ref>[https://hg.python.org/releasing/3.6/file/tip/Objects/setobject.c setobject.c {{---}} https://hg.python.org ] </ref> {{---}} реализация интерфейса множества с использованием хеш-таблицы. | ||
== Примечания == | == Примечания == | ||
<references/> | <references/> | ||
− | == Источники == | + | == Источники информации== |
* Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. «Алгоритмы. Построение и анализ» {{---}} «Вильямс», 2011 г. {{---}} 1296 стр. {{---}} ISBN 978-5-8459-0857-5, 5-8459-0857-4, 0-07-013151-1 | * Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. «Алгоритмы. Построение и анализ» {{---}} «Вильямс», 2011 г. {{---}} 1296 стр. {{---}} ISBN 978-5-8459-0857-5, 5-8459-0857-4, 0-07-013151-1 | ||
* Дональд Кнут. «Искусство программирования, том 3. Сортировка и поиск» {{---}} «Вильямс», 2007 г. {{---}} 824 стр. {{---}} ISBN 0-201-89685-0 | * Дональд Кнут. «Искусство программирования, том 3. Сортировка и поиск» {{---}} «Вильямс», 2007 г. {{---}} 824 стр. {{---}} ISBN 0-201-89685-0 | ||
− | * [http://ru.wikipedia.org/wiki/Хеш-таблица | + | * [http://ru.wikipedia.org/wiki/Хеш-таблица Википедия {{---}} Хеш-таблица] |
[[Категория:Дискретная математика и алгоритмы]] | [[Категория:Дискретная математика и алгоритмы]] | ||
[[Категория:Хеширование]] | [[Категория:Хеширование]] | ||
+ | [[Категория:Структуры данных]] |
Текущая версия на 19:42, 4 сентября 2022
Определение: |
Хеш-табли́ца (англ. hash-table) — структура данных, реализующая интерфейс ассоциативного массива. В отличие от деревьев поиска, реализующих тот же интерфейс, обеспечивают меньшее время отклика в среднем. Представляет собой эффективную структуру данных для реализации словарей, а именно, она позволяет хранить пары (ключ, значение) и выполнять три операции: операцию добавления новой пары, операцию поиска и операцию удаления пары по ключу. |
Содержание
Введение
Существует два основных вида хеш-таблиц: с цепочками и открытой адресацией. Хеш-таблица содержит некоторый массив , элементы которого есть пары (хеш-таблица с открытой адресацией) или списки пар (хеш-таблица с цепочками).
Выполнение операции в хеш-таблице начинается с вычисления хеш-функции от ключа. Хеш-код
играет роль индекса в массиве , а зная индекс, мы можем выполнить требующуюся операцию (добавление, удаление или поиск).Количество коллизий зависит от хеш-функции; чем лучше используемая хеш-функция, тем меньше вероятность их возникновения.
Лемма: |
Вероятность коллизий при вставке в хеш-таблицу превышает 50% |
Доказательство: |
Пусть хеш-таблица имеет размер и в нее добавляют элементов. Рассмотрим — вероятность того, что не возникнет ни одной коллизии. Добавим два любых элемента в нашу хеш-таблицу. Вероятность того, что они не попадут в одну и ту же ячейку таблицы равна . Возьмем еще один элемент. Тогда вероятность того, что третий элемент не попадет в одну из уже занятых ячеек равна . Рассуждая аналогичным образом, получим формулу:Тогда что в общем случае — вероятность возникновения коллизии равна: , |
Способ разрешения коллизий — важная составляющая любой хеш-таблицы.
Полностью избежать коллизий для произвольных данных невозможно в принципе, и хорошая хеш-функция в состоянии только минимизировать их количество. Но, в некоторых специальных случаях их удаётся избежать. Если все ключи элементов известны заранее, либо меняются очень редко, то можно подобрать хеш-функцию, с помощью которой, все ключи будут распределены по хеш-таблице без коллизий. Это хеш-таблицы с прямой адресацией; в них все операции, такие как: поиск, вставка и удаление работают за
.Если мы поделим число хранимых элементов на размер массива
(число возможных значений хеш-функции), то узнаем коэффициент заполнения хеш-таблицы (англ. load factor). От этого параметра зависит среднее время выполнения операций.Хеширование
Хеширование (англ. hashing) — класс методов поиска, идея которого состоит в вычислении хеш-кода, однозначно определяемого элементом с помощью хеш-функции, и использовании его, как основы для поиска (индексирование в памяти по хеш-коду выполняется за методы для борьбы с ними.
). В общем случае, однозначного соответствия между исходными данными и хеш-кодом нет в силу того, что количество значений хеш-функций меньше, чем вариантов исходных данных, поэтому существуют элементы, имеющие одинаковые хеш-коды — так называемые коллизии, но если два элемента имеют разный хеш-код, то они гарантированно различаются. Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций. Для того чтобы коллизии не замедляли работу с таблицей существуют
Определение: |
— называется хеш-функцией, где множество хранит ключи из множества . Если значит Коллизия (англ. collision): | — множество объектов (универсум).
Виды хеширования
- По способу хранения:
Статическое — фиксированное количество элементов. Один раз заполняем хеш-таблицу и осуществляем только проверку на наличие в ней нужных элементов,
Динамическое — добавляем, удаляем и смотрим на наличие нужных элементов.
- По виду хеш-функции:
Детерминированная хеш-функция,
Случайная хеш-функция.
Свойства хеш-таблицы
На поиск элемента в хеш-таблице в худшем случае, может потребоваться столько же времени, как и в списке, а именно математическое ожидание времени поиска элемента в хеш-таблице составляет . А все операции (поиск, вставка и удаление элементов) в среднем выполняются за время . При этом не гарантируется, что время выполнения отдельной операции мало́, так как при достижении некоторого значения коэффициента заполнения необходимо перехешировать таблицу: увеличить размер массива и заново добавить в новую хеш-таблицу все пары.
, но на практике хеширование более эффективно. При некоторых разумных допущенияхХеширование в современных языках программирования
Почти во всех современных языках присутствуют классы, реализующие хеширование. Рассмотрим некоторые из них.
- Java
- C++
- Python (CPython)
Примечания
Источники информации
- Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. «Алгоритмы. Построение и анализ» — «Вильямс», 2011 г. — 1296 стр. — ISBN 978-5-8459-0857-5, 5-8459-0857-4, 0-07-013151-1
- Дональд Кнут. «Искусство программирования, том 3. Сортировка и поиск» — «Вильямс», 2007 г. — 824 стр. — ISBN 0-201-89685-0
- Википедия — Хеш-таблица