Корреляция случайных величин — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Примеры)
м (rollbackEdits.php mass rollback)
 
(не показано 48 промежуточных версий 8 участников)
Строка 1: Строка 1:
== Определение ==
 
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
<b>Корреляция случайных величин</b>: пусть <tex>\eta,\xi</tex> две [[Независимые_случайные_величины | случайные величины]], определённые на одном и том же вероятностном пространстве. Тогда их корреляция определяется следующим образом:
+
<b>Среднеквадратичным отклонением</b> (англ. ''standart deviation'') <tex>\sigma_{\eta}</tex> называется величина, равная квадратному корню из [[Дисперсия_случайной_величины | дисперсии]] случайной величины <tex>\eta</tex>
:  <tex dpi = "150">Corr(\eta,\xi)={Cov(\eta,\xi) \over \sigma_{\eta} \times \sigma_{\xi}}</tex>.
+
: <tex>\sigma_{\eta}=\sqrt{D(\eta)}</tex>
 +
}}
 +
{{Определение
 +
|definition=
 +
Пусть <tex>\eta,\xi</tex> {{---}} две [[Дискретная_случайная_величина | случайные величины]], определённые на одном и том же вероятностном пространстве. Тогда <b> корреляцией случайных величин </b> (англ. correlation) <tex>\eta</tex> и <tex>\xi</tex> называется выражение следующего вида:
 +
:  <tex>\mathrm{Corr}(\eta,\xi)=\dfrac{\mathrm{Cov}(\eta,\xi)}{\sigma_{\eta}\sigma_{\xi}}</tex>, где <tex>\mathrm{Cov}(\eta,\xi)</tex> {{---}} [[Ковариация_случайных_величин | ковариация случайных величин]].
 
}}
 
}}
  
 
== Вычисление ==
 
== Вычисление ==
Заметим, что <tex>\sigma_{\xi} = \sqrt{D(\xi)} = E\big((\xi-E(\xi))^2\big)</tex>
+
Заметим, что <tex>\sigma_{\xi} = \sqrt{D(\xi)} = E\big((\xi-E(\xi))^2\big)</tex> {{---}} среднеквадратичное отклонение.
:  <tex dpi = "150">Corr(\eta,\xi)={Cov(\eta,\xi) \over \sigma_{\eta} \times \sigma_{\xi}} = {E\big((\eta-E\eta)(\xi-E\xi)\big) \over {\sqrt{D(\eta)} \times \sqrt{D(\xi)}}} ={E(\xi \times \eta) - E(\xi) \times E(\eta) \over {\sigma_{\eta} \times \sigma_{\xi}}}</tex>
+
:  <tex>\mathrm{Corr}(\eta,\xi)=\dfrac{\mathrm{Cov}(\eta,\xi)}{\sigma_{\eta} \sigma_{\xi}} = \dfrac{E\big((\eta-E\eta)(\xi-E\xi)\big)}{{\sqrt{D(\eta)} \sqrt{D(\xi)}}} =\dfrac{E(\xi \eta) - E(\xi) E(\eta)}{{\sigma_{\eta} \sigma_{\xi}}}</tex>
 +
 
 +
== Корреляция и взаимосвязь величин ==
 +
Значительная корреляция между случайными величинами всегда означает, что присутствует некая взаимосвязь между значениями конкретной выборки, но при другой выборке связь вполне может отсутствовать. Поэтому при нахождении взаимосвязи не нужно делать поспешных выводов о причинно-следственном характере величин, а следует рассмотреть наиболее полную выборку, чтобы делать какие-либо выводы. Коэффициенты корреляции устанавливают лишь статистические взаимосвязи, но не более того.
  
 
== Свойства корреляции ==
 
== Свойства корреляции ==
* Корреляция симметрична:
+
{{Утверждение
: <tex>Corr(\eta,\xi) = Corr(\xi,\eta)</tex>.
+
|statement=
 +
Корреляция симметрична:
 +
: <tex>\mathrm{Corr}(\eta,\xi) = \mathrm{Corr}(\xi,\eta)</tex>.
 +
|proof=
 +
: <tex>\mathrm{Corr}(\eta,\xi) = \dfrac{ E(\eta  \xi) - E(\eta)  E(\xi)}{\sqrt{D(\eta)}  \sqrt{D(\xi)} } = \dfrac{ E(\xi \eta) - E(\xi) E(\eta)}{\sqrt{D(\xi)}  \sqrt{D(\eta)} } = \mathrm{Corr}(\xi,\eta)</tex>.
 +
}}
 +
 
 +
{{Утверждение
 +
|statement=
 +
Корреляция случайной величины с собой равна <tex>1</tex>.
 +
|proof=
 +
: <tex>\mathrm{Corr}(\eta,\eta) = \dfrac{ E(\eta \eta) - E(\eta)  E(\eta)}{\sqrt{D(\eta)}  \sqrt{D(\eta)} } = \dfrac{D(\eta)}{D(\eta)} = 1</tex>
 +
}}
 +
 
 +
{{Утверждение
 +
|statement=
 +
Корреляция лежит на отрезке <tex>[-1, 1]</tex>.
 +
 
 +
 
 +
 
 +
}}
 +
 
 +
{{Утверждение
 +
|statement=
 +
Если <tex> \mathrm{Corr}(\eta, \xi) = \pm 1 </tex>, то <tex>\eta</tex> и <tex>\xi</tex> линейно зависимы.
 +
 
 +
 
 +
}}
 +
 
 +
{{Утверждение
 +
|statement=
 +
Если <tex>\eta</tex> и <tex>\xi</tex> линейно зависимы, то <tex>\mathrm{Corr}(\eta, \xi)= \pm 1 </tex>.
 +
 
  
* Корреляция случайной величины с собой равна 1:
+
}}
: <tex dpi = "150">Corr(\eta,\eta) = { E(\eta \times \eta) - E(\eta) \times E(\eta)  \over \sqrt{D(\eta)} \times \sqrt{D(\eta)} } = {D(\eta) \over D(\eta)} = 1</tex>
 
  
* Если <tex>\eta,\xi</tex> независимые случайные величины, то
+
{{Утверждение
: <tex>Corr(\eta,\xi) = 0</tex>.
+
|statement=
Пусть <tex>\eta</tex> и <tex>\xi</tex> - независимые величины. Тогда <tex>E(\eta \times \xi)=E(\eta) \times E(\xi)</tex>, где <tex>E</tex> - их [[Математическое_ожидание_случайной_величины|математическое ожидание]]. Получаем:
+
Если <tex>\eta,\xi</tex> независимые случайные величины, то <tex>\mathrm{Corr}(\eta,\xi) = 0</tex>.
: <tex dpi = "150">{E(\xi) \times E(\eta) - E(\xi) \times E(\eta) \over {E\big((\eta-E(\eta))^2\big) \times E\big((\xi-E(\xi))^2\big)}} = 0</tex>
+
|proof=
 +
Пусть <tex>\eta</tex> и <tex>\xi</tex> {{---}} [[Независимые_случайные_величины|независимые величины]]. Тогда <tex>E(\eta \xi)=E(\eta) E(\xi)</tex>, где <tex>E</tex> {{---}} их [[Математическое_ожидание_случайной_величины|математическое ожидание]]. Получаем:
 +
: <tex>\mathrm{Corr}(\eta, \xi) = \dfrac{E(\xi) E(\eta) - E(\xi) E(\eta)}{{E\big((\eta-E(\eta))^2\big) E\big((\xi-E(\xi))^2\big)}} = 0</tex>
 
<b>Но обратное неверно:</b>
 
<b>Но обратное неверно:</b>
Пусть <tex>\eta</tex> - случайная величина, распределенная симметрично около 0, а <tex>\xi=\eta^2</tex>. <tex>Corr(\eta,\xi)=0</tex>, но <tex>\eta</tex> и <tex>\xi</tex> - зависимые величины.
+
Пусть <tex>\eta</tex> {{---}} [[Дискретная_случайная_величина|случайная величина]], распределенная симметрично около <tex>0</tex>, а <tex>\xi=\eta^2</tex>. <tex>\mathrm{Corr}(\eta,\xi)=0</tex>, но <tex>\eta</tex> и <tex>\xi</tex> {{---}} зависимые величины.
 +
}}
 +
 
 +
== Примеры ==
 +
В общем смысле корреляция {{---}} это зависимость между случайными величинами, когда изменение одной влечет изменение распределения другой.
 +
=== Определение корреляции по диаграмме ===
 +
[[Файл:Пример_графиков_корреляции.png|600px|thumb|right|3 диаграммы рассеивания двух случайных величин <tex>X</tex> и <tex>Y</tex>]]
  
* Корреляция лежит не на всей вещественной оси
+
#Соответственно, на '''первом графике''' изображена '''положительная корреляция''', когда увеличение <tex>Y</tex> ведет к постепенному увеличению <tex>X</tex>.
: <tex>-1 \leqslant Corr(\eta,\xi) \leqslant 1</tex>.
+
#'''Второй график''' отображает '''отрицательную корреляцию''', когда увеличение <tex>X</tex> воздействует на постепенное уменьшение <tex>Y</tex>.
Для доказательства используем свойство [[Ковариация_случайных_величин|ковариации]]: <tex>|Cov(\eta,\xi)| \leqslant \sqrt{D(\xi)} \cdot \sqrt{D(\eta)}</tex>. Тогда при раскрытии модуля получаем:
+
#'''Третий график''' показывает, что <tex>X</tex> и <tex>Y</tex> связаны слабо, их распределение не зависит от изменения друг друга, поэтому корреляция между ними будет '''равна <tex>0</tex>'''.
: <tex>-\sqrt{D(\xi)} \cdot \sqrt{D(\eta)} \leqslant Cov(\eta,\xi) \leqslant \sqrt{D(\xi)} \cdot \sqrt{D(\eta)}</tex>.  
 
Поделим левую и правую части на <tex>\sqrt{D(\xi)} \cdot \sqrt{D(\eta)}</tex> и получим: <tex dpi = "150">-1 \leqslant {Cov(\eta,\xi) \over  \sqrt{D(\xi)} \cdot \sqrt{D(\eta)}} \leqslant 1</tex>, т.е.
 
: <tex>-1 \leqslant Corr(\eta,\xi) \leqslant 1</tex>, ч.т.д.
 
  
== Примеры ==
+
=== Определение корреляции по таблице ===
[[Файл:Пример_графиков_корреляции.png]]
+
Рассмотрим <tex>2</tex> случайные величины: курс акций нефтедобывающей компании (<tex>X</tex>) и цены на нефть (<tex>Y</tex>).
 +
 
 +
{| class="wikitable"
 +
|-
 +
! X 
 +
| <tex>2003,6</tex> || <tex>2013,2</tex> || <tex>2007,6</tex> || <tex>2007,4</tex> || <tex>2039,9</tex> || <tex>2025</tex> || <tex>2007</tex> || <tex>2017</tex> || <tex>2015,6</tex> || <tex>2011</tex>
 +
|-
 +
! Y
 +
| <tex>108,4</tex> || <tex>107,96</tex> || <tex>108,88</tex> || <tex>110,44</tex> || <tex>110,2</tex> || <tex>108,97</tex> || <tex>109,15</tex> || <tex>108,8</tex> || <tex>111,2</tex> || <tex>110,23</tex>
 +
|-
 +
|}
 +
Для упрощения вычислений определим <tex>X</tex> и <tex>Y</tex> как равновероятные случайные величины. Тогда их математическое ожидание и дисперсию легко посчитать:
 +
 
 +
<tex>E(X) = 2014,73</tex>
 +
 
 +
<tex>E(Y) = 109,42</tex>
 +
 
 +
<tex>D(X) = 104,9361</tex>
 +
 
 +
<tex>D(Y) = 0,959661</tex>
 +
 
 +
Используя формулу, <tex>\mathrm{Corr}(\eta,\xi)=\dfrac{E(\xi \eta) - E(\xi)E(\eta)}{{\sigma_{\eta} \sigma_{\xi}}}</tex> определяем, что корреляция между величинами <tex>X</tex> и <tex>Y</tex> составляет <tex>0,240935496</tex>, то есть <tex>24\%</tex>.
 +
 
 +
== См. также ==
 +
*[[Дисперсия случайной величины|Дисперсия случайной величины]]
 +
*[[Ковариация случайных величин|Ковариация случайных величин]]
  
== Ссылки ==
+
== Источники информации ==
 
* [http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F Википедия {{---}} Корреляция]
 
* [http://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%80%D1%80%D0%B5%D0%BB%D1%8F%D1%86%D0%B8%D1%8F Википедия {{---}} Корреляция]
 +
* [http://en.wikipedia.org/wiki/Correlation_and_dependence Wikipedia {{---}} Correlation and dependence]
 +
* [http://www.intuit.ru/department/mathematics/appstat/9/1.html INTUIT.ru {{---}} Курс: Прикладная статистика]
  
 
[[Категория:Дискретная математика и алгоритмы]]
 
[[Категория:Дискретная математика и алгоритмы]]
  
 
[[Категория: Теория вероятности ]]
 
[[Категория: Теория вероятности ]]

Текущая версия на 19:42, 4 сентября 2022

Определение:
Среднеквадратичным отклонением (англ. standart deviation) [math]\sigma_{\eta}[/math] называется величина, равная квадратному корню из дисперсии случайной величины [math]\eta[/math]
[math]\sigma_{\eta}=\sqrt{D(\eta)}[/math]


Определение:
Пусть [math]\eta,\xi[/math] — две случайные величины, определённые на одном и том же вероятностном пространстве. Тогда корреляцией случайных величин (англ. correlation) [math]\eta[/math] и [math]\xi[/math] называется выражение следующего вида:
[math]\mathrm{Corr}(\eta,\xi)=\dfrac{\mathrm{Cov}(\eta,\xi)}{\sigma_{\eta}\sigma_{\xi}}[/math], где [math]\mathrm{Cov}(\eta,\xi)[/math] ковариация случайных величин.


Вычисление

Заметим, что [math]\sigma_{\xi} = \sqrt{D(\xi)} = E\big((\xi-E(\xi))^2\big)[/math] — среднеквадратичное отклонение.

[math]\mathrm{Corr}(\eta,\xi)=\dfrac{\mathrm{Cov}(\eta,\xi)}{\sigma_{\eta} \sigma_{\xi}} = \dfrac{E\big((\eta-E\eta)(\xi-E\xi)\big)}{{\sqrt{D(\eta)} \sqrt{D(\xi)}}} =\dfrac{E(\xi \eta) - E(\xi) E(\eta)}{{\sigma_{\eta} \sigma_{\xi}}}[/math]

Корреляция и взаимосвязь величин

Значительная корреляция между случайными величинами всегда означает, что присутствует некая взаимосвязь между значениями конкретной выборки, но при другой выборке связь вполне может отсутствовать. Поэтому при нахождении взаимосвязи не нужно делать поспешных выводов о причинно-следственном характере величин, а следует рассмотреть наиболее полную выборку, чтобы делать какие-либо выводы. Коэффициенты корреляции устанавливают лишь статистические взаимосвязи, но не более того.

Свойства корреляции

Утверждение:
Корреляция симметрична:
[math]\mathrm{Corr}(\eta,\xi) = \mathrm{Corr}(\xi,\eta)[/math].
[math]\triangleright[/math]
[math]\mathrm{Corr}(\eta,\xi) = \dfrac{ E(\eta \xi) - E(\eta) E(\xi)}{\sqrt{D(\eta)} \sqrt{D(\xi)} } = \dfrac{ E(\xi \eta) - E(\xi) E(\eta)}{\sqrt{D(\xi)} \sqrt{D(\eta)} } = \mathrm{Corr}(\xi,\eta)[/math].
[math]\triangleleft[/math]
Утверждение:
Корреляция случайной величины с собой равна [math]1[/math].
[math]\triangleright[/math]
[math]\mathrm{Corr}(\eta,\eta) = \dfrac{ E(\eta \eta) - E(\eta) E(\eta)}{\sqrt{D(\eta)} \sqrt{D(\eta)} } = \dfrac{D(\eta)}{D(\eta)} = 1[/math]
[math]\triangleleft[/math]
Утверждение:
Корреляция лежит на отрезке [math][-1, 1][/math].
Утверждение:
Если [math] \mathrm{Corr}(\eta, \xi) = \pm 1 [/math], то [math]\eta[/math] и [math]\xi[/math] линейно зависимы.
Утверждение:
Если [math]\eta[/math] и [math]\xi[/math] линейно зависимы, то [math]\mathrm{Corr}(\eta, \xi)= \pm 1 [/math].
Утверждение:
Если [math]\eta,\xi[/math] независимые случайные величины, то [math]\mathrm{Corr}(\eta,\xi) = 0[/math].
[math]\triangleright[/math]

Пусть [math]\eta[/math] и [math]\xi[/math]независимые величины. Тогда [math]E(\eta \xi)=E(\eta) E(\xi)[/math], где [math]E[/math] — их математическое ожидание. Получаем:

[math]\mathrm{Corr}(\eta, \xi) = \dfrac{E(\xi) E(\eta) - E(\xi) E(\eta)}{{E\big((\eta-E(\eta))^2\big) E\big((\xi-E(\xi))^2\big)}} = 0[/math]

Но обратное неверно:

Пусть [math]\eta[/math]случайная величина, распределенная симметрично около [math]0[/math], а [math]\xi=\eta^2[/math]. [math]\mathrm{Corr}(\eta,\xi)=0[/math], но [math]\eta[/math] и [math]\xi[/math] — зависимые величины.
[math]\triangleleft[/math]

Примеры

В общем смысле корреляция — это зависимость между случайными величинами, когда изменение одной влечет изменение распределения другой.

Определение корреляции по диаграмме

3 диаграммы рассеивания двух случайных величин [math]X[/math] и [math]Y[/math]
  1. Соответственно, на первом графике изображена положительная корреляция, когда увеличение [math]Y[/math] ведет к постепенному увеличению [math]X[/math].
  2. Второй график отображает отрицательную корреляцию, когда увеличение [math]X[/math] воздействует на постепенное уменьшение [math]Y[/math].
  3. Третий график показывает, что [math]X[/math] и [math]Y[/math] связаны слабо, их распределение не зависит от изменения друг друга, поэтому корреляция между ними будет равна [math]0[/math].

Определение корреляции по таблице

Рассмотрим [math]2[/math] случайные величины: курс акций нефтедобывающей компании ([math]X[/math]) и цены на нефть ([math]Y[/math]).

X [math]2003,6[/math] [math]2013,2[/math] [math]2007,6[/math] [math]2007,4[/math] [math]2039,9[/math] [math]2025[/math] [math]2007[/math] [math]2017[/math] [math]2015,6[/math] [math]2011[/math]
Y [math]108,4[/math] [math]107,96[/math] [math]108,88[/math] [math]110,44[/math] [math]110,2[/math] [math]108,97[/math] [math]109,15[/math] [math]108,8[/math] [math]111,2[/math] [math]110,23[/math]

Для упрощения вычислений определим [math]X[/math] и [math]Y[/math] как равновероятные случайные величины. Тогда их математическое ожидание и дисперсию легко посчитать:

[math]E(X) = 2014,73[/math]

[math]E(Y) = 109,42[/math]

[math]D(X) = 104,9361[/math]

[math]D(Y) = 0,959661[/math]

Используя формулу, [math]\mathrm{Corr}(\eta,\xi)=\dfrac{E(\xi \eta) - E(\xi)E(\eta)}{{\sigma_{\eta} \sigma_{\xi}}}[/math] определяем, что корреляция между величинами [math]X[/math] и [math]Y[/math] составляет [math]0,240935496[/math], то есть [math]24\%[/math].

См. также

Источники информации