Материал из Викиконспекты
|
|
(не показана 1 промежуточная версия 1 участника) |
(нет различий)
|
Текущая версия на 19:42, 4 сентября 2022
Задача о перпендикуляре
Определение: |
Задачей о перпендикуляре называется задача отыскания ортогональной составляющей и проекции вектора [math]x[/math], то есть его разложения по формуле: [math]x= \mathcal{P}_{L}^{\bot}x+ \mathcal{P}_{M}^{\bot}x[/math]
(где [math]\mathcal{P}_{L}^{\bot}x[/math] — ортогональный проектор на пп [math]L[/math], [math]L[/math] — пп унитарного пространства [math]E[/math], a [math]\mathcal{P}_{M}^{\bot}x[/math] — ортогональный проектор на пп [math]M[/math], [math]M[/math] — ортогональное дополнение [math]E[/math]). |
Способ 1(через ОРТН базис)
Утверждение: |
1) Найти [math]\{e_i\}_{i=1}^{k}[/math] — ОРТН базис [math]L[/math]
2) [math] \mathcal{P}_{L}^{\bot}x = \sum\limits_{i=1}^{k} \left\langle x,e_i \right\rangle e_i; \ \mathcal{P}_{M}^{\bot} x = x - \mathcal{P}_{L}^{\bot}x. [/math] |
Способ 2 (через систему уравнений)
Утверждение: |
Рассмотрим [math]\{a_1, a_2...a_k\}[/math] — базис [math]L[/math] (не ОРТН)
[math]x= \mathcal{P}_{L}^{\bot}x+ \mathcal{P}_{M}^{\bot}x=\gamma^1a_1 + \gamma^2a_2+...+\gamma^ka_k+\mathcal{P}_{M}^{\bot}x \ (*)[/math]
[math]
\begin{cases}
\left\langle a_1,(*) \right\rangle: \left\langle a_1,x \right\rangle = \overline{\gamma_1}\left\langle a_1,a_1 \right\rangle+...+\overline{\gamma_k}\left\langle a_1,a_k \right\rangle \\
\left\langle a_2,(*) \right\rangle: \left\langle a_2,x \right\rangle = \overline{\gamma_1}\left\langle a_2,a_1 \right\rangle+...+\overline{\gamma_k}\left\langle a_2,a_k \right\rangle \\
\cdot \\
\cdot \\
\left\langle a_k,(*) \right\rangle: \left\langle a_k,x \right\rangle = \overline{\gamma_1}\left\langle a_k,a_1 \right\rangle+...+\overline{\gamma_k}\left\langle a_k,a_k \right\rangle
\end{cases}
[/math]
Решая эту систему уравнений для неизвестных [math]\overline{\gamma_i}[/math], находим коэффициенты разложения [math]\mathcal{P}_{L}^{\bot}x[/math].
[math]\mathcal{P}_{M}^{\bot} x = x - \mathcal{P}_{L}^{\bot}x. [/math] |