1ripi1sumf — различия между версиями
Dominica (обсуждение | вклад) (→Пример 3) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 3 промежуточные версии 2 участников) | |||
Строка 8: | Строка 8: | ||
А именно, покажем, что решение задачи состоит в сопоставлении <tex>n</tex> различным заданиям различных времен начала выполнения работы. Если сопоставляем работе <tex>i</tex> время <tex>t</tex>, то вклад в целевую функцию будет <tex> f_i(t + 1) </tex>. | А именно, покажем, что решение задачи состоит в сопоставлении <tex>n</tex> различным заданиям различных времен начала выполнения работы. Если сопоставляем работе <tex>i</tex> время <tex>t</tex>, то вклад в целевую функцию будет <tex> f_i(t + 1) </tex>. | ||
− | Далее будет показано, что при построении оптимального расписания нам нужно будет рассмотреть всего <tex>n</tex> различных времен начала работ. Следовательно, подобная задача может быть решена за <tex>O(n^3)</tex>. | + | Далее будет показано, что при построении оптимального расписания нам нужно будет рассмотреть всего <tex>n</tex> различных времен начала работ. Следовательно, подобная задача может быть решена за <tex>\mathcal{O}(n^3)</tex>. |
Поскольку <tex>f_i</tex> {{---}} монотонно неубывающие функции, то это значит, что в оптимальном расписании работы должны начинать исполняться как можно раньше. Первые <tex>n</tex> самых ранних для начала исполнения времен <tex>t_i</tex> могут быть вычислены следующим алгоритмом : | Поскольку <tex>f_i</tex> {{---}} монотонно неубывающие функции, то это значит, что в оптимальном расписании работы должны начинать исполняться как можно раньше. Первые <tex>n</tex> самых ранних для начала исполнения времен <tex>t_i</tex> могут быть вычислены следующим алгоритмом : | ||
Строка 39: | Строка 39: | ||
}} | }} | ||
==Частный случай== | ==Частный случай== | ||
− | В случае, когда все времена появлений заданий различны, оптимальное решение может быть посчитано за <tex>O(n\log n) </tex>. | + | В случае, когда все времена появлений заданий различны, оптимальное решение может быть посчитано за <tex>\mathcal{O}(n\log n) </tex>. |
Поскольку любое задание выполняется за единицу времени, а все функции <tex>f_i</tex> являются неубывающими, то будет достаточно отсортировать работы по возрастанию времен появления и выполнять каждую работу как только она появится. Поскольку все <tex>r_i</tex> различны, то промежутки выполнения работ не будут пересекаться {{---}} расписание будет корректным. | Поскольку любое задание выполняется за единицу времени, а все функции <tex>f_i</tex> являются неубывающими, то будет достаточно отсортировать работы по возрастанию времен появления и выполнять каждую работу как только она появится. Поскольку все <tex>r_i</tex> различны, то промежутки выполнения работ не будут пересекаться {{---}} расписание будет корректным. | ||
Строка 86: | Строка 86: | ||
</tex> | </tex> | ||
− | В результате работы Венгерского алгоритма будет выбран порядок работ <tex>2, 3, 1</tex>, что даст лучший результат {{---}} <tex>19</tex>. | + | В результате работы [[Венгерский алгоритм решения задачи о назначениях | Венгерского алгоритма]] будет выбран порядок работ <tex>2, 3, 1</tex>, что даст лучший результат {{---}} <tex>19</tex>. |
На этом примере хорошо видно, что решение, выбирающие в каждый момент времени <tex>t_i</tex> несделанную работу с минимальным значением <tex>f_i(t_i + 1)</tex> будет давать плохой результат. | На этом примере хорошо видно, что решение, выбирающие в каждый момент времени <tex>t_i</tex> несделанную работу с минимальным значением <tex>f_i(t_i + 1)</tex> будет давать плохой результат. |
Текущая версия на 19:42, 4 сентября 2022
Для каждой работы задана монотонно неубывающая функция
. Необходимо минимизировать где каждая считается на значении времени завершения выполнения задания с номером .Содержание
Решение
Эта задача может быть решена сведением к решению задачи о назначениях. А именно, покажем, что решение задачи состоит в сопоставлении различным заданиям различных времен начала выполнения работы. Если сопоставляем работе время , то вклад в целевую функцию будет .
Далее будет показано, что при построении оптимального расписания нам нужно будет рассмотреть всего
различных времен начала работ. Следовательно, подобная задача может быть решена за .Поскольку
— монотонно неубывающие функции, то это значит, что в оптимальном расписании работы должны начинать исполняться как можно раньше. Первые самых ранних для начала исполнения времен могут быть вычислены следующим алгоритмом :отсортиртировать по неубыванию времена появления= for =
Для того, чтобы найти оптимальное расписание, построим полный двудольный граф, в котором будут доли и ребра между ними:
Решив задачу о назначениях для данного графа, получим оптимальное расписание.
Доказательство корректности и оптимальности
Лемма: |
Пусть значения вычислены приведенным выше алгоритмом. Тогда существует оптимальное расписание в котором все задач распределены по всем временам |
Доказательство: |
Предположим, что в некоторое оптимальное расписание Из того, как в алгоритме выбирались значения для входят времена где а вместо времени используется какое-то другое. Из всех возможных таких оптимальных расписаний мы возьмем то, у которого будет максимально. следует, что — минимальное возможное время, большее в которое можно начать выполнять какое-нибудь из оставшихся заданий. Если во время в расписании не выполняется никакого задания, то какое-то задание, которое могло бы выполнится в момент времени выполняется в позднее. Значит оно может быть перемещено в нашем расписании на время без увеличения целевой функции. Таким образом, наше новое расписание тоже будет оптимальным. Получили противоречие с максимальностью . Значит из всех оптимальных расписаний нам подходят только те, в которых . |
Частный случай
В случае, когда все времена появлений заданий различны, оптимальное решение может быть посчитано за
.Поскольку любое задание выполняется за единицу времени, а все функции
являются неубывающими, то будет достаточно отсортировать работы по возрастанию времен появления и выполнять каждую работу как только она появится. Поскольку все различны, то промежутки выполнения работ не будут пересекаться — расписание будет корректным.Примеры
Пример 1
Даны четыре задания.
Отсортируем задания по неубыванию
, а дальше будем выполнять их по мере появления. В полученном расписании работы будут идти в порядке и давать в ответе , что является оптимальным результатом.Пример 2
Пусть у нас есть три задания, и каждое из них имеет время появления
Заданы функции
:
Поступить как в предыдущем примере и просто отсортировать работы мы теперь не можем — не понятно, в каком порядке сортировать задания с одинаковым временем появления.
Тогда нужно по приведенному в начале алгоритму посчитать времена, когда мы можем начать выполнять задания. В результате получим:
. Тогда, согласно алгоритму, задача сведется к следующей задаче о назначениях:
В результате работы Венгерского алгоритма будет выбран порядок работ , что даст лучший результат — .
На этом примере хорошо видно, что решение, выбирающие в каждый момент времени
несделанную работу с минимальным значением будет давать плохой результат.Пример 3
Пусть у нас есть четыре задания, определенные следующим образом:
Работы уже отсортированы, поэтому посчитаем времена
для выполнения заданий. Получим: .Таблица, необходимая для решения задачи, будет построена так, что если работа с номером
ещё не доступна в момент времени , то в соответствующей ячейке будет стоять .
В результате будет выбран порядок работ , и все работы выполнятся за единиц времени.
См. также
Источники информации
- P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 19 - 20