Раскраска двудольного графа в два цвета — различия между версиями
(Новая страница: « == Раскраска в 2 цвета == {{Теорема |statement= Граф <tex>2-</t...») |
м (rollbackEdits.php mass rollback) |
||
(не показаны 4 промежуточные версии 2 участников) | |||
Строка 4: | Строка 4: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | [[Основные определения теории графов|Граф]] <tex>2 | + | [[Основные определения теории графов|Граф]] <tex>2</tex>-[[Раскраска графа|раскрашиваемый]] тогда и только тогда, когда он [[Двудольные графы|двудольный]]. |
|proof= | |proof= | ||
− | Если множество вершин двудольного графа можно разделить на два независимых подмножества так, что ни одна из вершин ни в одном из этих подмножеств не является смежной к вершине из этого же подмножества, тогда граф <tex>G = (W, E)</tex> — <tex>2 | + | Если множество вершин двудольного графа можно разделить на два независимых подмножества так, что ни одна из вершин ни в одном из этих подмножеств не является смежной к вершине из этого же подмножества, тогда граф <tex>G = (W, E)</tex> — <tex>2</tex>-раскрашиваем. <tex>\chi(G) = 2</tex>. |
− | Если же граф <tex>2 | + | Если же граф <tex>2</tex>-раскрашиваемый, то множество его вершин можно разделить на два непересекающихся множества так, чтобы в каждом из них не нашлось двух смежных вершин. Тогда граф будет двудольны. |
}} | }} | ||
Строка 19: | Строка 19: | ||
|proof= | |proof= | ||
− | <tex>\Rightarrow</tex> Рассмотрим двудольный граф. Начнем цикл в доле <tex> U </tex>. Нужно пройти по четному числу ребер, чтобы вернуться в <tex> U </tex> снова. Следовательно, при замыкании цикла число ребер будет четным. | + | <tex>\Rightarrow</tex> |
+ | :Рассмотрим двудольный граф. Начнем цикл в доле <tex> U </tex>. Нужно пройти по четному числу ребер, чтобы вернуться в <tex> U </tex> снова. Следовательно, при замыкании цикла число ребер будет четным. | ||
− | <tex>\Leftarrow</tex> Пусть ненулевой граф <tex> G </tex> [[k-связность|связен]] и не имеет циклов нечетной длины. Выберем произвольно вершину <tex> u </tex> и разобьем множество всех вершин на два непересекающихся множества <tex> U </tex> и <tex> V </tex> так, чтобы в <tex> U </tex> лежали вершины <tex> v_0 </tex>, такие что [[Кратчайший путь в ациклическом графе|кратчайшая цепь]] <tex>(u, v_0)</tex> была чётной длины, а в <tex> V </tex> соответственно вершины <tex>v_1</tex>, для которых длина цепи <tex>(u, v_1)</tex> — нечётная. При этом <tex> u \in U </tex>. | + | <tex>\Leftarrow</tex> |
− | + | :Пусть ненулевой граф <tex> G </tex> [[k-связность|связен]] и не имеет циклов нечетной длины. Выберем произвольно вершину <tex> u </tex> и разобьем множество всех вершин на два непересекающихся множества <tex> U </tex> и <tex> V </tex> так, чтобы в <tex> U </tex> лежали вершины <tex> v_0 </tex>, такие что [[Кратчайший путь в ациклическом графе|кратчайшая цепь]] <tex>(u, v_0)</tex> была чётной длины, а в <tex> V </tex> соответственно вершины <tex>v_1</tex>, для которых длина цепи <tex>(u, v_1)</tex> — нечётная. При этом <tex> u \in U </tex>. В графе <tex> G </tex> нет ребер <tex>ab</tex>, таких что <tex>a, b </tex> лежат одновременно в <tex> U </tex> и <tex>V</tex>. Докажем это от противного. Пусть <tex>a, b \in U </tex>. Зададим <tex> P_0 </tex> — кратчайшая <tex> (u, a) </tex> цепь, а <tex> P_1 </tex> — кратчайшая <tex> (u, b) </tex> цепь. Обе цепи четной длины. Пусть <tex> v_0 </tex> — последняя вершина цепи <tex> P_0 </tex>, принадлежащая <tex> P_1 </tex>. Тогда подцепи от <tex> u </tex> до <tex> v_0 </tex> в <tex> P_0</tex> и <tex>P_1</tex> имеют одинаковую длину (иначе бы, пройдя по более короткой подцепи от <tex>u</tex> до <tex>v_0</tex> мы смогли бы найти более короткую цепь от <tex> u </tex> до <tex> a </tex> или от <tex> u </tex> до <tex> b </tex>, чем цепь <tex> P_0 </tex> или <tex> P_1 </tex> ). Так как подцепи от <tex> v_0 </tex> до <tex> a </tex> и от <tex> v_0 </tex> до <tex> b </tex> в цепях <tex> P_0 </tex> и <tex> P_1 </tex> имеют одинаковую четность, а значит в сумме с ребром <tex> ab </tex> они образуют цикл нечётной длины, что невозможно. | |
− | В графе <tex> G </tex> нет ребер <tex>ab</tex>, таких что <tex>a, b </tex> лежат одновременно в <tex> U </tex> и <tex>V</tex>. Докажем это от противного. Пусть <tex>a, b \in U </tex>. Зададим <tex> P_0 </tex> — кратчайшая <tex> (u, a) </tex> цепь, а <tex> P_1 </tex> — кратчайшая <tex> (u, b) </tex> цепь. Обе цепи четной длины. Пусть <tex> v_0 </tex> — последняя вершина цепи <tex> P_0 </tex>, принадлежащая <tex> P_1 </tex>. Тогда подцепи от <tex> u </tex> до <tex> v_0 </tex> в <tex> P_0</tex> и <tex>P_1</tex> имеют одинаковую длину (иначе бы, пройдя по более короткой подцепи от <tex>u</tex> до <tex>v_0</tex> мы смогли бы найти более короткую цепь от <tex> u </tex> до <tex> a </tex> или от <tex> u </tex> до <tex> b </tex>, чем цепь <tex> P_0 </tex> или <tex> P_1 </tex> ). Так как подцепи от <tex> v_0 </tex> до <tex> a </tex> и от <tex> v_0 </tex> до <tex> b </tex> в цепях <tex> P_0 </tex> и <tex> P_1 </tex> имеют одинаковую четность, а значит в сумме с ребром <tex> ab </tex> они образуют цикл нечётной длины, что невозможно. | ||
}} | }} | ||
Строка 43: | Строка 43: | ||
== Источники информации == | == Источники информации == | ||
− | * Асанов М. О., Баранский В. А., Расин В. В. | + | * ''Асанов М. О., Баранский В. А., Расин В. В.'' Дискретная математика: Графы, матроиды, алгоритмы. |
* ''Харари Ф.'' Теория графов. /пер. с англ. — изд. 2-е — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6 | * ''Харари Ф.'' Теория графов. /пер. с англ. — изд. 2-е — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6 | ||
* [http://en.wikipedia.org/wiki/K%C3%B6nig's_theorem_(graph_theory) Теорема Кёнига] | * [http://en.wikipedia.org/wiki/K%C3%B6nig's_theorem_(graph_theory) Теорема Кёнига] |
Текущая версия на 19:42, 4 сентября 2022
Содержание
Раскраска в 2 цвета
Теорема: |
Доказательство: |
Если множество вершин двудольного графа можно разделить на два независимых подмножества так, что ни одна из вершин ни в одном из этих подмножеств не является смежной к вершине из этого же подмножества, тогда граф Если же граф — -раскрашиваем. . -раскрашиваемый, то множество его вершин можно разделить на два непересекающихся множества так, чтобы в каждом из них не нашлось двух смежных вершин. Тогда граф будет двудольны. |
Теорема Кёнига
Теорема (Кёниг): |
Граф циклы в графе имеют чётную длину. является двудольным тогда и только тогда, когда все |
Доказательство: |
|
Следствие
Алгоритм проверки графа на двудольность, используя обход в глубину
Так как граф является двудольным тогда и только тогда, когда все циклы четны, определить двудольность можно за один проход в глубину. На каждом шаге обхода в глубину помечаем вершину. Допустим, мы пошли в первую вершину — помечаем её как . Затем просматриваем все смежные вершины, и если не помечена вершина, то на ней ставим пометку и рекурсивно переходим в нее. Если же она помечена и на ней стоит та же пометка, что и у той, из которой шли (в нашем случае ), значит граф не двудольный.
Алгоритм проверки графа на двудольность, используя обход в ширину
Произведём серию поисков в ширину. Т.е. будем запускать поиск в ширину из каждой непосещённой вершины. Ту вершину, из которой мы начинаем идти, мы помещаем в первую долю. В процессе поиска в ширину, если мы идём в какую-то новую вершину, то мы помещаем её в долю, отличную от доли текущей вершину. Если же мы пытаемся пройти по ребру в вершину, которая уже посещена, то мы проверяем, чтобы эта вершина и текущая вершина находились в разных долях. В противном случае граф двудольным не является. По окончании работы алгоритма мы либо обнаружим, что граф не двудолен, либо найдём разбиение вершин графа на две доли.
См. также
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: Графы, матроиды, алгоритмы.
- Харари Ф. Теория графов. /пер. с англ. — изд. 2-е — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6
- Теорема Кёнига
- MAXimal :: algo :: Проверка графа на двудольность
- Обход в глубину. Реализации.
- Обход в ширину. Реализации.