255
правок
Изменения
→Специализация алгоритма для генерации следующего разбиения на подмножества
Отсюда понятен алгоритм:
* Находим находим суффикс минимальной длины, который можно изменить без изменения префикса текущего объекта <tex>P</tex>,* К к оставшейся части дописываем минимальный возможный элемент (чтобы было выполнено правило <tex>P < Q</tex>),* Дописываем дописываем минимальный возможный хвост.
По построению получаем, что <tex>Q</tex> {{---}} минимально возможный.
== Специализация алгоритма для генерации следующего [[комбинаторные объекты|битового вектора]] ==
* Находим минимальный суффикс, в котором есть <tex>0</tex>, его можно увеличить, не меняя оставшейся части
* Вместо <tex>0</tex> записываем <tex>1</tex>
* Дописываем минимально возможный хвост из нулей
=== Пример работы ===
{| class="wikitable" border = 1
|0||1||0||1||style="background:#FFCC00"|0||1||1||исходный битовый вектор
|-
| || ||^|| || ^||находим элемент 0 (самый правый)начинаем идти с конца
|-
|0||1||0||style="background:#FFCC00"|10||style="background:#FFCC00"|10||пока элементы равны 1||меняем его , заменяем их на 10
|-
|0||1||1||style="background:#FFCC00"|1||0||style="background:#FFCC00"|0||меняем элементы правее первый не удовлетворяющий условию цикла элемент на нули1
|-
|'''0'''||'''1'''||'''1'''||'''0'''||'''0'''||следующий битовый вектор
|}
== Специализация алгоритма для генерации [[комбинаторные объекты|следующей перестановки]] ==
* Двигаясь справа налево, находим элемент, нарушающий убывающую последовательность (в обычном порядке, слева направо, см. пример)
* Меняем его с минимальным элементом, большим нашего, стоящим правее
* Перевернем правую часть
=== Пример работы ===
|}
== Специализация алгоритма для генерации следующей [[комбинаторные объекты |мультиперестановки]] ==
* Двигаясь справа налево, находим элемент, нарушающий убывающую последовательность (в обычном порядке, слева направо, см. пример).
* Меняем его с минимальным элементом, большим нашего, стоящим правее.
* Переворачиваем правую часть.
'''functionint[]''' nextMultiperm(var b:array[1..N] of integer): array[1..N] of integer; '''varint[]''' i , j b): '''integer'''; <font color=green>// <tex>n</tex> {{---}} длина мультиперестановки</font> '''begin''' i := N n - 1;2 '''while''' (i > = 0) '''and''' (b[i] >= b[i + 1]) '''do''' dec( i);-- '''if''' i > = 0 '''then''' '''begin''' j := i + 1; '''while''' (j < Nn - 1) '''and''' (b[j + 1] > b[i]) '''do''' inc(j);++ swap(b[i] , b[j]); '''for''' j := reverse(b, i + 1 '''to''' (N + i) '''div''' 2 '''do''' swap(b[j], b[N n - j + i + 1]); return(b[1..N]); '''endreturn'''b '''else''' '''begin''' return(null); '''end;''' '''end;'null''
=== Пример работы ===
|}
== Специализация алгоритма для генерации [[комбинаторные объекты|следующего сочетания]] ==
* Добавим в конец массива с сочетанием <tex>N+1</tex> – максимальный элемент.
* Пойдём справа налево. Будем искать номер элемента, который отличается от предыдущего на <tex>2</tex>и больше.
* Увеличим найденный элемент на <tex>1</tex>, и допишем в конец минимально возможный хвост, если такого элемента нет – на вход было дано последнее сочетание.
'''functionint[]''' nextChoose(var a:array[1..k] of integer): array[1..k] of integer; // n,k - параметры сочетания. '''varint[]''' ia,j : '''integer;int''' b:array[1..k+1] of n, '''integer;''' '''beginint'''k): <font color=green>// <tex>n,k </tex> {{---}} параметры сочетания</font> '''for''' i := 1 0 '''to''' k '''do'''- 1 b[i]:=a[i]; b[k + 1] := n + 1; i := n;k - 1 '''while''' (i > = 0) '''and''' ((b[i + 1] - b[i]) < 2) '''do''' i := i - 1;- '''if''' i > = 0 '''then''' '''begin''' b[i] := b[i] + 1;+ '''for''' j := i + 1 '''to''' k '''do'''- 1 b[j] := b[j - 1] + 1; '''for''' i := 1 0 '''to''' k '''do'''- 1 a[i] := b[i]; return(a[1..k]); '''endreturn'''a
'''else'''
=== Пример работы ===
|}
== Специализация алгоритма для генерации следующего [[комбинаторные объекты|разбиения на слагаемые]] ==
Рассматриваемый алгоритм находит следующее [[комбинаторные объекты|разбиение на слагаемые]], при этом разбиение упорядоченно по возрастанию.
* Увеличим предпоследнее слагаемое на <tex>1</tex>, уменьшим последнее слагаемое на <tex>1</tex>.
** Если предпоследнее слагаемое стало больше последнего, то увеличиваем предпоследнее слагаемое на величину последнего.
** Если предпоследнее слагаемое умноженное на 2 меньше последнего, то разбиваем последнее слагаемое <tex>s</tex> на два слагаемых <tex>a</tex> и <tex>b</tex> таких, что <tex>a</tex> равно предпоследнему слагаемому, а <tex>b = s - a</tex>. Повторяем этот процесс, пока разбиение остается корректным, то есть предпоследнее слагаемое хотя бы в два раза меньше последнего.
<code>
<font color=green>// <tex>b – </tex> {{---}} список, содержащий разбиение данного числа, length – <tex>b.size</tex>{{---}} его размер.</font> '''function''' nextPartition(var b: list<int>): list<int>; '''var nextPartition(''' i : '''integer;''list<int>' '''begin''' b[b.size] ):= b[b.size] - 1; b[b.size - 1] := -- b[b.size - 12] + 1;+ '''if''' b[b.size - 12] > b[b.size- 1] '''then''' '''begin''' b[b.size - 12] :+= b[b.size - 1] + b[b.size]; b.popremove(b.size - 1); '''end'''
'''else'''
</code>
|1||style="background:#FFCC00"|1||style="background:#FFCC00"|7|| || ||Прибавим 1 + 1, вычтем 7 - 1.
|-
|1||style="background:#FFCC00"|2||style="background:#FFCC00"|6|| || ||Проверяем: 2<6, значит разбиваем 6 пока оно не станет <меньше 4
|-
|1||2||style="background:#FFCC00"|2||style="background:#FFCC00"|4|| ||
|1||style="background:#FFCC00"|4||style="background:#FFCC00"|5||Прибавим 4 + 1, вычтем 5 - 1.
|-
|1||style="background:#FFCC00"|5||style="background:#FFCC00"|4||Проверяем: 5>4, значит прибавим к 5 + 4.
|-
|1||9||style="background:#FFCC00"|4||Удалим последний элемент.
|-
|'''1'''||'''9'''||||Следующее разбиение на слагаемые числа 10.
|}
== См.также ==
* [[Получение предыдущего объекта]]
* [[Получение объекта по номеру]]
* [[Получение номера по объекту]]