Решение задач по логике — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Вывод утверждений из аксиом)
м (rollbackEdits.php mass rollback)
 
(не показано 5 промежуточных версий 4 участников)
Строка 22: Строка 22:
 
# <tex>b \rightarrow a \rightarrow b \& a</tex> {{---}} схема аксиом 3
 
# <tex>b \rightarrow a \rightarrow b \& a</tex> {{---}} схема аксиом 3
 
# <tex>(b \rightarrow a \rightarrow b \& a) \rightarrow (a \& b \rightarrow (b \rightarrow a \rightarrow b \& a))</tex> {{---}} схема аксиом 1
 
# <tex>(b \rightarrow a \rightarrow b \& a) \rightarrow (a \& b \rightarrow (b \rightarrow a \rightarrow b \& a))</tex> {{---}} схема аксиом 1
# <tex>a \& b \rightarrow (b \rightarrow a \rightarrow b \& a)</tex> {{---}} modus ponens 8, 9
+
# <tex>a \& b \rightarrow (b \rightarrow a \rightarrow b \& a)</tex> {{---}} modus ponens 7, 8
 
# <tex>a \& b \rightarrow b</tex> {{---}} схема аксиом 5
 
# <tex>a \& b \rightarrow b</tex> {{---}} схема аксиом 5
 
# <tex>(a \& b \rightarrow b) \rightarrow (a \& b \rightarrow b \rightarrow a \rightarrow b \& a) \rightarrow (a \& b \rightarrow a \rightarrow b \& a)</tex> {{---}} схема аксиом 2
 
# <tex>(a \& b \rightarrow b) \rightarrow (a \& b \rightarrow b \rightarrow a \rightarrow b \& a) \rightarrow (a \& b \rightarrow a \rightarrow b \& a)</tex> {{---}} схема аксиом 2
 
# <tex>(a \& b \rightarrow b \rightarrow a \rightarrow b \& a) \rightarrow (a \& b \rightarrow a \rightarrow b \& a)</tex> {{---}} modus ponens 10, 11
 
# <tex>(a \& b \rightarrow b \rightarrow a \rightarrow b \& a) \rightarrow (a \& b \rightarrow a \rightarrow b \& a)</tex> {{---}} modus ponens 10, 11
 
# <tex>a \& b \rightarrow a \rightarrow b \& a</tex> {{---}} modus ponens 9, 12
 
# <tex>a \& b \rightarrow a \rightarrow b \& a</tex> {{---}} modus ponens 9, 12
# <tex>(a \& b \rightarrow a) \rightarrow (a \& b \rightarrow a \rightarrow b \& a) \rightarrow (a \&b \rightarrow b \& a)</tex>
+
# <tex>(a \& b \rightarrow a) \rightarrow (a \& b \rightarrow a \rightarrow b \& a) \rightarrow (a \&b \rightarrow b \& a)</tex> {{---}} схема аксиом 2
 
# <tex>(a \& b \rightarrow a \rightarrow b \& a) \rightarrow (a \& b \rightarrow b \& a)</tex> {{---}} modus ponens 6, 14
 
# <tex>(a \& b \rightarrow a \rightarrow b \& a) \rightarrow (a \& b \rightarrow b \& a)</tex> {{---}} modus ponens 6, 14
 
# <tex>a \& b \rightarrow b \& a</tex> {{---}} modus ponens 13, 15
 
# <tex>a \& b \rightarrow b \& a</tex> {{---}} modus ponens 13, 15
  
 
Чтобы получить из доказательства с предположениями доказательство без предположений, нужно воспользоваться доказательством теоремы о дедукции. Для начала надо написать "план доказательства" из строчек вида <tex>\alpha \rightarrow \gamma_i</tex>, где <tex>\alpha</tex> {{---}} предположение, а <tex>\gamma_i</tex> {{---}} промежуточное утверждение из доказательства, и доказывать каждое утверждение из плана доказательства так, как это расписано в доказательстве теоремы о дедукции.
 
Чтобы получить из доказательства с предположениями доказательство без предположений, нужно воспользоваться доказательством теоремы о дедукции. Для начала надо написать "план доказательства" из строчек вида <tex>\alpha \rightarrow \gamma_i</tex>, где <tex>\alpha</tex> {{---}} предположение, а <tex>\gamma_i</tex> {{---}} промежуточное утверждение из доказательства, и доказывать каждое утверждение из плана доказательства так, как это расписано в доказательстве теоремы о дедукции.
 +
 +
Докажем, что <tex>a \rightarrow \neg a \rightarrow b</tex>. По теореме о дедукции, если <tex>a, \neg a \vdash b</tex>, то <tex>a \rightarrow \neg a \rightarrow b</tex>.
 +
 +
# <tex>a</tex> {{---}}  предположение
 +
# <tex>a \rightarrow (\neg b \rightarrow a)</tex> {{---}}  схема аксиом 1
 +
# <tex>(\neg b \rightarrow a)</tex> {{---}}  modus ponens 1, 2
 +
# <tex>\neg a</tex> {{---}} предположение
 +
# <tex>\neg a \rightarrow (\neg b \rightarrow \neg a)</tex> {{---}}  схема аксиом 1
 +
# <tex>(\neg b \rightarrow \neg a)</tex> {{---}}  modus ponens 4, 5
 +
# <tex>(\neg b \rightarrow a) \rightarrow (\neg b \rightarrow \neg a) \rightarrow \neg \neg b</tex> {{---}}  схема аксиом 9
 +
# <tex>(\neg b \rightarrow \neg a) \rightarrow \neg \neg b</tex> {{---}}  modus ponens 3, 7
 +
# <tex>\neg \neg b</tex> {{---}}  modus ponens 6, 8
 +
# <tex>\neg \neg b \rightarrow b</tex> {{---}} схема аксиом 10
 +
# <tex>b</tex> {{---}} modus ponens 9, 10
 +
 +
[[Категория: Математическая логика]]

Текущая версия на 19:05, 4 сентября 2022

Вывод утверждений из аксиом

Докажем, что [math]a\&b \rightarrow b\&a[/math]. По теореме о дедукции, если [math]a \& b \vdash b\& a[/math], то [math]\vdash a \& b \rightarrow b \& a[/math].

  1. [math]a \& b[/math] — по предположению
  2. [math]a \& b \rightarrow a[/math] — схема аксиом 4
  3. [math]a[/math] — modus ponens 1, 2
  4. [math]a \& b \rightarrow b[/math] — схема аксиом 5
  5. [math]b[/math] — modus ponens 1, 4
  6. [math]b \rightarrow a \rightarrow b \& a[/math] — схема аксиом 3
  7. [math]a \rightarrow b \& a[/math] — modus ponens 5, 6
  8. [math]b \& a[/math] — modus ponens 3, 7

Докажем то же самое, только без использования теоремы о дедукции.

  1. [math]a \&b \rightarrow (a \& b \rightarrow a \& b)[/math] — схема аксиом 1
  2. [math](a \& b \rightarrow (a \& b \rightarrow a \& b)) \rightarrow (a \& b \rightarrow ((a \& b \rightarrow a \& b) \rightarrow a \&b)) \rightarrow (a \& b \rightarrow a \& b)[/math] — схема аксиом 2
  3. [math](a \& b \rightarrow ((a \& b \rightarrow a \& b) \rightarrow a \& b)) \rightarrow (a \& b \rightarrow a \& b)[/math] — modus ponens 1, 2
  4. [math]a \& b \rightarrow ((a \& b \rightarrow a \& b) \rightarrow a \& b)[/math] — схема аксиом 1
  5. [math]a \& b \rightarrow a \& b[/math] — modus ponens 4, 3
  6. [math]a \& b \rightarrow a[/math] — схема аксиом 4
  7. [math]b \rightarrow a \rightarrow b \& a[/math] — схема аксиом 3
  8. [math](b \rightarrow a \rightarrow b \& a) \rightarrow (a \& b \rightarrow (b \rightarrow a \rightarrow b \& a))[/math] — схема аксиом 1
  9. [math]a \& b \rightarrow (b \rightarrow a \rightarrow b \& a)[/math] — modus ponens 7, 8
  10. [math]a \& b \rightarrow b[/math] — схема аксиом 5
  11. [math](a \& b \rightarrow b) \rightarrow (a \& b \rightarrow b \rightarrow a \rightarrow b \& a) \rightarrow (a \& b \rightarrow a \rightarrow b \& a)[/math] — схема аксиом 2
  12. [math](a \& b \rightarrow b \rightarrow a \rightarrow b \& a) \rightarrow (a \& b \rightarrow a \rightarrow b \& a)[/math] — modus ponens 10, 11
  13. [math]a \& b \rightarrow a \rightarrow b \& a[/math] — modus ponens 9, 12
  14. [math](a \& b \rightarrow a) \rightarrow (a \& b \rightarrow a \rightarrow b \& a) \rightarrow (a \&b \rightarrow b \& a)[/math] — схема аксиом 2
  15. [math](a \& b \rightarrow a \rightarrow b \& a) \rightarrow (a \& b \rightarrow b \& a)[/math] — modus ponens 6, 14
  16. [math]a \& b \rightarrow b \& a[/math] — modus ponens 13, 15

Чтобы получить из доказательства с предположениями доказательство без предположений, нужно воспользоваться доказательством теоремы о дедукции. Для начала надо написать "план доказательства" из строчек вида [math]\alpha \rightarrow \gamma_i[/math], где [math]\alpha[/math] — предположение, а [math]\gamma_i[/math] — промежуточное утверждение из доказательства, и доказывать каждое утверждение из плана доказательства так, как это расписано в доказательстве теоремы о дедукции.

Докажем, что [math]a \rightarrow \neg a \rightarrow b[/math]. По теореме о дедукции, если [math]a, \neg a \vdash b[/math], то [math]a \rightarrow \neg a \rightarrow b[/math].

  1. [math]a[/math] — предположение
  2. [math]a \rightarrow (\neg b \rightarrow a)[/math] — схема аксиом 1
  3. [math](\neg b \rightarrow a)[/math] — modus ponens 1, 2
  4. [math]\neg a[/math] — предположение
  5. [math]\neg a \rightarrow (\neg b \rightarrow \neg a)[/math] — схема аксиом 1
  6. [math](\neg b \rightarrow \neg a)[/math] — modus ponens 4, 5
  7. [math](\neg b \rightarrow a) \rightarrow (\neg b \rightarrow \neg a) \rightarrow \neg \neg b[/math] — схема аксиом 9
  8. [math](\neg b \rightarrow \neg a) \rightarrow \neg \neg b[/math] — modus ponens 3, 7
  9. [math]\neg \neg b[/math] — modus ponens 6, 8
  10. [math]\neg \neg b \rightarrow b[/math] — схема аксиом 10
  11. [math]b[/math] — modus ponens 9, 10