Лемма Бернсайда, задача о числе ожерелий — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Исправлена опечатка)
(Перенаправление на Лемма Бёрнсайда и Теорема Пойа)
 
(не показано 18 промежуточных версий 2 участников)
Строка 1: Строка 1:
{{В разработке}}
+
#перенаправление [[Лемма Бёрнсайда и Теорема Пойа]]
 
 
{{Лемма
 
|id=l1
 
|about=Бернсайда
 
|statement=
 
Число орбит <math> = \frac { \sum_{g \in G} |Fix(g)| } { |G| } </math>
 
}}
 
 
 
{{Утверждение
 
|id=s1
 
|about=1
 
|statement=
 
<math> |Orb(x)| = \frac { |G| } { |St(x) } </math>
 
}}
 
 
 
 
 
Преобразуем выражение для числа орбит, полученное из леммы Бернсайда. <br>
 
<math>\frac { \sum_{g \in G} |Fix(g)| } { |G| } = \frac { \sum_{ g \in G } \sum_{ x \in X } \{gx = x\} } { |G| } = \frac { \sum_{ x \in X } \sum_{ g \in G } \{gx = x\} } { |G| }
 
= \frac { \sum_{ x \in X } |St(x)| } { |G| } = \sum_{ x \in X } \frac {1} { |Orb(x)| } </math> <br>
 
Последнее преобразование выполнено на основании утверждения 1.
 
 
 
[[Категория:Теория групп]]
 

Текущая версия на 23:11, 7 января 2016